Skip to main content
Log in

Earthquake Precursors in the Ionic and Gas Composition of Groundwater: A Review of World Data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Anomalies in the ionic and gas composition of groundwater before earthquakes (hydrogeochemical precursors, hereinafter HGCP) are considered according to data of systematic observations in ten self-flowing wells and springs in seismically active regions of Russia (Kamchatka Peninsula), Uzbekistan, Japan, and Iceland. Using an extended set of earthquake parameters, it was shown that HGCP were manifested for 1–9 months in the near and intermediate zones of the future earthquake sources with Mw = 5.3–7.8. Such properties of hydrogeochemical precursors allow their use for predicting the magnitude and time of expected seismic events, as well as their impact in the observation area. A model is presented for a registered precursor in the form of the ionic composition of groundwater in self-flowing well based on observational data on concentrations of anions and cations and on a mathematical model for the mixing of two waters of contrastingly different composition in a zone of increased conductivity. Calculations for one of the wells are presented as an illustrative example of the chemical composition of two mixing waters in the aquifer and in the wellbore. This model and observational data are used to estimate parameters of the disturbed state of the well–aquifer system during the preparation of an earthquake: the relaxation time of the water pressure pulses (t0) and the movement time of mixed water (τ0). The morphology and duration of HGCP are controlled by relations between t0 and τ0. The further development of HGCP studies and their application in predicting earthquakes require a technical modernization of the system of hydrogeochemical observations and the development of HGCP models for individual wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. D. Barberio, M. Barbieri, A. Billi, C. Doglioni, and M. Petitta, “Hydrogeochemical changes before and during the 2016 Amatrice–Norcia seismic sequence (central Italy),” Scientific Reports. 7(1), 11735 (2017).

    Article  Google Scholar 

  2. G. I. Barenblatt and Yu. P. Zheltov, “On main equations of filtration of homogenous liquids in fractures rocks,” Dokl. Akad. Nauk SSSR 132 (3), 545–548 (1960).

    Google Scholar 

  3. V. L. Barsukov, V. S. Serebrennikov, G. M. Varshal, and A. V. Garanin, “Geochemical methods of earthquake prediction,” Geokhimiya, No. 3, 323–337 (1979).

    Google Scholar 

  4. F. Bella, P. F. Biagi, M. Caputo, E. Cozzi, Monica G. Della, A. Ermini, E. I. Gordeev, Y. M. Khatkevich, G. Martinelli, W. Plastino, R. Scandone, V. Sgrigna, and D. Zilpimiani, “Hydrogeochemical anomalies in Kamchatka (Russia),” Phys. Chem. Earth. 23 (9–10), 921–925 (1998).

    Article  Google Scholar 

  5. P. F. Biagi, A. Ermini, S. P. Kingsley, Y. M. Khatkevich, and E. I. Gordeev, “Groundwater ion content precursors of strong earthquakes in Kamchatka (Russia),” Pageopch. 157, 1359–1377 (2000a).

    Article  Google Scholar 

  6. P. F. Biagi, A. Ermini, E. Cozzio, Y. M. Gordeev, and E. I. Khatkevich, “Hydrogeochemical precursors in Kamchatka (Russia) related to the strongest earthquakes in 1988–1997,” Natural Hazard. 21, 263–276 (2000b).

    Article  Google Scholar 

  7. P. F. Biagi, A. Ermini, S. P. Kingsley, Y. M Gordeev, and E. I. Khatkevich, “Possible precursors in groundwater ions and gases content in Kamchatka (Russia),” Phys. Chem. Earth. (A). 25 (3). 295–305 (2000).

    Article  Google Scholar 

  8. P. F. Biagi, R. Piccolo, A. Ermini, Y. Fujinawa, S. P. Kingsley, Y. M. Khatkevich, and E. I. Gordeev, “Hydrogeochemical precursors of strong earthquakes in Kamchatka: further analysis,” Natural Hazards and Earth System Sciences 1 (1–2), 9–14 (2001).

    Article  Google Scholar 

  9. T. Boschetti, M. Barbieri, M. D. Barberio, A. Billi, S. Petitta, and M. Frondini, “CO2 inflow and elements desorption prior to a seismic sequence, Amatrice-Norcia 2016, Italy,” Geochem. Geophys. 20, 2303–2317 (2019).

    Google Scholar 

  10. V. N. Chebrov, D. V. Droznin, Yu. A. Kugaenko, V. I. Levina, S. L. Senyukov, V. A. Sergeev, Yu. V. Shevchenko, and V. V. Yashchuk, “The system of detailed seismological observations in Kamchatka in 2011,” J. Volcanol. Seismol. 7 (1), 16–36 (2013).

    Article  Google Scholar 

  11. A. Yu. Chebrova, A. S. Chemarev, E. A. Matveenko, and D. V. Chebrov, “A single information system of seismological data in the Kamchatka Branch, Federal Research Center of Geophysical Survey of RAS: principles of organization, main elements, key functions,” Geofiz. Issled. 21 (3), 66–91 (2020).

    Google Scholar 

  12. G. Chiodini, C. Cardellini, Luccio F. Di, G. Selva, F. Frondini, S. Caliro, A. Rosiello, and G. Beddini, and G. Ventura, “Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10–year record in the Apennines, Italy,” Sci. Adv. 6, eabc2938 (2020).

  13. R. D. Cicerone, J. E. Ebel, and J. Britton “A systematic compilation of earthquake precursors,” Tectonophysics 476, 371–396 (2009).

    Article  Google Scholar 

  14. P. P. Firstov and E. O. Makarov, “Dynamics of subsoil radon in Kamchatka and strong earthquakes,” (KamGU im. Vitusa Beringa, Petropavlovsk–Kamchatskii, 2018) [in Russian]. Hydrodynamic Earthquake Precursors (Nauka, Moscow, 1985) [in Russian].

  15. S. Ingebritsen and M. Manga “Earthquakes: hydrogeochemical precursors,” Nature Geosci. 7 (10), 697–698 (2014).

    Article  Google Scholar 

  16. S. E. Ingebritsen, D. L. Galloway, E. M. Colvard, M. L. Sorey, and R. H. Mariner, “Time-variation of hydrothermal discharge at selected sites in the western United States: implications for monitoring,” J. Volcanol. Geotherm. Res. 111, 1–23 (2001).

    Article  Google Scholar 

  17. T. H. Jordan, Y-T. Chen, P. Gasparini, R. Madariaga, I. Main, W. Marzocchiet, G. Papadopoulos, G. Yamaoka K. Sobolev, and J. Zschau, “Operational earthquake forecasting. State of knowledge and guidelines for utilization. ICEF Final Report 30 May 2011,” Annals of Geophys. 54 (4). 315–391 (2011).

    Google Scholar 

  18. Yu. M. Khatkevich, “On possible mid-range earthquake prediction with magnitude over 5 manifested in Petropavlovsk-Kamchatski,” Vulkanol. Seismol, No. 1, 63–67 (1994).

    Google Scholar 

  19. Yu. M. Khatkevich and G. V. Ryabinin, “Hydrogeochemical studies in Kamchatka,” Complex Seismological and Geophysical in Kamchatka, Ed. by E. I. Gordeev and V. N. Chebrov (Kamchatskii pechatnyi dvor, Petropavlovsk-Kamchatskii, 2004), pp. 96–112 [in Russian].

  20. S. P. Kingsley, P. F. Biagi, R. Piccolo, V. Capozzi, A. Ermini, Y. M. Khatkevich, and E. I. Gordeev, “Hydrogeochemical precursors of strong earthquakes: a realistic possibility in Kamchatka,” Phys. Chem. Earth (C) 26 (10–12), 769–774 (2001).

    Google Scholar 

  21. I. G. Kissin, E. V. Pinneker, and V. G. Yasko, “Underground hydrosphere and seismic processes,” Principles of Hydrogeology. 4. Geological Activity and History of Water in the Eart’s Interiors (Nauka, Novosibirsk1982), pp. 57–78 [in Russian].

    Google Scholar 

  22. I. G. Kissin and Yu. I. Stklyanin, “Formation of hydrogeochemical earthquake precursors,” Hydrogeochemical Earthquake Precursors (Nauka, Moscow, 1985), pp. 23–29 [in Russian].

    Google Scholar 

  23. G. N. Kopylova, “Water level changes in Hole Elizovskaya-1, Kamchatka caused by strong earthquakes: data from 1987−1998 observations,” Vulkanol. Seismol., No. 2, 39–52 (2001).

  24. G. N. Kopylova, “Seismicity as factor of groundwater mode formation,” Vestn. KRAUNTs. Ser. Nauki Zemle 7 (1), 50–66 (2006).

    Google Scholar 

  25. G. Kopylova and S. Boldina, “Anomalies in groundwater composition caused by earthquakes: examples and modeling issues,” E3S Web of Conferences 98, 01029 (2019).

  26. G. N. Kopylova and S. V. Boldina, “Anomalous changes of chemical composition of groundwaters in response to the 02.03.1992 Kamchatka earthquake (Mw = 6.9),” Geofiz. Issled. 13(1), 39–49 (2012).

    Google Scholar 

  27. G. N. Kopylova and S. V. Boldina, “Hydrogeoseismological research in Kamchatka: 1977–2017,” J. Volcanol. Seismol. 13 (2), 71–84 (2019).

    Article  Google Scholar 

  28. G. Kopylova and S. Boldina, “Hydrogeological earthquake precursors: a case study from the Kamchatka Peninsula,” Front. Earth Sci. 8, 576017 (2020).

    Article  Google Scholar 

  29. G. N. Kopylova and S. V. Boldina, “Effects of seismic waves in water level changes in a well: empirical data and models,” Izv., Phys. Solid Earth 56 (4), 530–549 (2020).

    Article  Google Scholar 

  30. G. Kopylova and S. Boldina, “Preseismic groundwater ion content variations: observational data in flowing wells of the Kamchatka Peninsula and conceptual model,” Minerals 11, 731 (2021).

    Article  Google Scholar 

  31. G. N. Kopylova and L. N. Taranova, “Synchronization signals in the variations of groundwater chemical composition in Kamchatka in relation to the strong (M w ≥ 6.6) earthquakes,” Izv., Phys. Solid Earth 49 (4), 577–586 (2013).

    Article  Google Scholar 

  32. G. N. Kopylova and P. V. Voropaev, “Processes of the formation of post-seismic anomalies of chemical composition of thermomineral waters,” Vulkanol. Seismol., No. 5, 42–48 (2006).

  33. G. N. Kopylova, V. M. Sugrobov, and Yu. M. Khatkevich, “Changes of regime of springs and hydrogeological holes of the Petropavlovsk test site (Kamchatka) under earthquake influence,” Vulkanol. Seismol., No. 2, 53–37 (1994).

  34. G. N. Kopylova, G. M. Steblov, S. V. Boldina, and I. A. Sdelnikova, “The possibility of estimating the coseismic deformation from water level observations in wells,” Izv., Phys. Solid Earth 46 (1), 47–56 (2010).

    Article  Google Scholar 

  35. G. N. Kopylova, N. V. Guseva, Yu. G. Kopylova, and S. V. Boldina, “The chemical composition of ground water in observational water vents in the Petropavlovsk geodynamic test site: the classification and effects of large earthquakes,” J. Volcanol. Seismol. 12 (4), 268–286 (2018).

    Article  Google Scholar 

  36. G. N. Kopylova, Sh. S. Yusupov, Yu. K. Serafimova, and L. Yu. Shin, “Hydrogeochemical earthquake precursors based on observations in Kamchatka Peninsula and Uzbekistan,” Problems of Complex Geophysical Monitoring of the Russian Far East. Proc. 7 th Research Technical Conference, Petropavlovsk-Kamchatskii, Russia, 2019, Ed. by D. V. Chebrov (FITs EGS RAN, Obninsk, 2019), pp. 282–286 [in Russian].

  37. G. N. Kopylova, Sh. S. Yusupov, Yu. K. Serafimova, L. Yu. Shin, and S. V. Boldina, “Hydrogeochemical earthquake precursors: evidence from Kamchatka Peninsuka, Russia and Uzbekistan,” Vestn. KRAUNTs. Nauki o Zemle. 48 (4), 5–20 (2020).

  38. F. F. Laptev and I. Yu. Sokolov, Chemical Data on Groundwaters. A Textbook of Hydrogeologist, Ed. by M. E. Altovskii (Gosgeoltekhizdat, Moscow, 1962), pp. 165–229.

    Google Scholar 

  39. G. Martinelli, “Previous, current, and future trends in research into earthquake precursors in geofluids,” Geosci. 10 (5), 189 (2020).

    Article  Google Scholar 

  40. G. Martinelli, G. Facca, N. Genzano, F. Gherardi, M. Lisi, and L. Tramutoli, and V. Pierotti, “Earthquake–related signals in Central Italy detected by hydrogeochemical and satellite techniques,” Front. Earth Sci. 8, 584716 (2020a).

    Article  Google Scholar 

  41. S. V. Medvedev, V. Shponkhoier, and V. Karnik, Scale of Earthquake Intensity MSK–64 (MGK AN SSSR, Moscow, 1965) [in Russian].

    Google Scholar 

  42. Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am. 75 (4). 1135–1154 (1985).

    Article  Google Scholar 

  43. D. Reddy, P. Nagabhushanam, and B. S. Sukhija “Earthquake (M 5.1) induced hydrogeochemical and δ18O changes: validation of aquifer breaching–Mixing model in Koyna, India,” Geophys. J. Int. 184 (1), 359–370 (2011).

    Article  Google Scholar 

  44. T. Rikitake, Earthquake Prediction (Elsevier, 1976).

    Google Scholar 

  45. Yu. V. Riznichenko, “Sizes of crustal earthquake source and seismic moment,” Studies on Earthquake Physics (Nauka, Moscow, 1976), pp. 9–27 [in Russian]

    Google Scholar 

  46. G. V. Ryabinin and Yu. M. Khatkevich, “Hydrogeochemical effects predating strong earthquakes of Kamchatka. Algorithm of identification and morphological analysis,” Vestn. KRAUNTs. Nauki o Zemle. 13 (1). 107–122 (2009).

  47. N. V. Shebalin, “Methods of application of engineering–seismological data during seismic subdivision,” Seismic Zoning of the USSR (Nauka, Moscow, 1968).

    Google Scholar 

  48. A. Skelton, M. Andrén, H. Kristmannsdóttir, G. Stockmann, C. -M. Mörth, A. Sveinbjörnsdóttir, S. Jónsson, E. Sturkell, H. R. Guõrúnardóttir, H. Hjartarson, H. Siegmund, and I. Kockum, “Changes in groundwater chemistry before two consecutive earthquakes in Iceland,” Nature Geosci. 7 (10), 752–756 (2014).

    Article  Google Scholar 

  49. A. Skelton, L. Liljedahl-Claesson, N. Wästeby, M. Andrén, G. Stockmann, E. Sturkell, C. -M. Mörth, A. Stefansson, E. Tollefsen, H. Siegmund, N. Keller, R. Kjartansdóttir, H. Hjartarson, and I. Kockum, “Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at two sites in northern Iceland – a review,” J. Geophys. Res. Solid Earth. 124, 2702–2720 (2019).

    Article  Google Scholar 

  50. D. Thomas, “Geochemical precursors to seismic activity,” Pure Appl. Geophys. 126, 241–266 (1988).

    Article  Google Scholar 

  51. U. Tsunogai and H. Wakita, “Precursory chemical changes in ground water: Kobe earthquake, Japan,” Science. 269 (5220), 61–63 (1995).

    Article  Google Scholar 

  52. V. I. Ulomov and B. Z. Mavashev, “Precursor of strong tectonic earthquake,” Dokl. Akad. Nauk SSSR 176 (2), 319–321 (1967).

    Google Scholar 

  53. C.-Y. Wang, “Liquefaction beyond the near field,” Seismol. Res. Lett. 78, 512–517 (2007).

    Article  Google Scholar 

  54. C.-Y. Wang and M. Manga, Earthquakes and Water (Springer, Berlin, 2010).

    Google Scholar 

  55. Ch.-Y. Wang and M. Manga, Water and Earthquakes (Springer, Cham, 2021).

    Book  Google Scholar 

  56. R. Wang, H. Woith, C. Milkereit, and J. Zschau, “Modeling of hydrogeochemical anomalies induced by distant earthquakes,” Geophys. J. Int. 157, 717–726 (2004).

    Article  Google Scholar 

  57. N. Wästeby, A. Skelton, E. Tollefsen, M. Andren, G. Stockmann, L. C. Liljedahl, E. Sturkell, and M. Mörth, “Hydrochemical monitoring, petrological observation, and geochemical modeling of fault healing after an earthquake,” J. Geophys. Res.: Solid Earth 119, 5727–5740 (2014).

    Article  Google Scholar 

  58. Sh. S. Yusupov, U. A. Nurmatov, and L. Yu. Shin, “Anomalous variations of hydroseismological parameters during emergence of the Tuyabuguzskoe and Marzhanbulakskoe earthquakes in May, 25 and 26, 2013,” Doklady AN RUz: FAN, No. 6, 38–40 (2014).

    Google Scholar 

  59. Z. Zhou, L. Tian, J. Zhao, H. Wang, and J. Liu, “Stress-related pre–seismic water radon concentration variations in the Panjin observation well, China (1994–2020),” Front. Earth Sci. 8, 596283 (2020).

    Article  Google Scholar 

Download references

Funding

This study was supported by Russian Foundation for Basic Research, project no. 20-15-50082_Expansion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kopylova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylova, G.N., Boldina, S.V. & Serafimova, Y.K. Earthquake Precursors in the Ionic and Gas Composition of Groundwater: A Review of World Data. Geochem. Int. 60, 928–946 (2022). https://doi.org/10.1134/S0016702922100056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922100056

Keywords:

Navigation