Skip to main content
Log in

Transformation of Structure and Adsorption Properties of Montmorillonite under Thermochemical Treatment

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—Complex studies revealed transformations of composition, structure, and properties of bentonite clays of the Taganskoe (Kazakhstan) and Dahskovskoe (Moscow oblast) deposits under thermochemical treatment. Leaching of cations from interlayer and octahedral sites, protonation of interlayer and OH-groups lead to the modification of interlayer and 2 : 1 layer composition. This, in turn, causes significant changes of properties: a decrease of cation exchange capacity owing to the decrease of layer charge and increase of specific surface through the decomposition and partial amorphization of structure. Bentonites of the Dashkovskoe deposit showed the higher resistance to the thermochemical impact than bentonites of the Taganskoe deposit owing to the isolating action of organic matter. Obtained results demonstrated that bentonite clays preserve most of adsorption properties even under such strong thermochemical influence (13 М HNO3, 90°С, 5 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. M. Adams, “Synthetic organic chemistry using pillared, cation–exchanged and acid- treated montmorillonite catalysts–a review,” Appl. Clay Sci. 2, 309–342 (1987).

    Article  Google Scholar 

  2. I. Barshad and A. E. Foscolos, “Factors affecting the rate of interchange reaction of ad–sorbed H+ on the 2 : 1 clay minerals,” Soil Sci. 110, 52–60 (1970).

    Article  Google Scholar 

  3. G. Besson and V. A. Drits, “Refined relationship between chemical composition of dioctahedral fine–dispersed mica minerals and their infrared spectra in the OH stretching region. Part II. The main factors affecting OH vibration and quantitative analysis,” Clay Miner. 45, 170–183 (1997).

    Article  Google Scholar 

  4. J. Bovey and W. Jones, “Characterization of Al-pillared acid-activated clay catalysts,” J. Mater. Chem. 5, 2027–2035 (1995)

    Article  Google Scholar 

  5. G. W. Brindley and G. Brown, Crystal Structures of Clay Minerals and Their X-ray Identification (Mineral. Soc. London, London, 1980).

    Book  Google Scholar 

  6. D. R. Brown, “Review: clays as catalyst and reagent support,” Geol. Carpath. Ser. Clays 45, 45–56 (1994).

    Google Scholar 

  7. K. A. Carrado and P. Komadel, “Acid activation of bentonites and polymer–clay nanocomposites,” Elements 5, 111–116 (2009).

    Article  Google Scholar 

  8. S. V. Churakov, “Mobility of Na and Cs on montmorillonite surface under partially saturated conditions,” Environ. Sci. Technol. 47, 9816–9823 (2013).

    Article  Google Scholar 

  9. B. Čičel and P. Komadel, “Structural formulae of layer silicates,” (Eds.), Quantitative Methods in Soil Mineralogy, Ed. by J. E. Amonette, and L. W. Zelazny, Soil Sci. Soc. Am. Misc. Publ. WI, pp. 114–136 (1994).

  10. N. Doebelin and R. Kleeberg, “Profex: A graphical user interface for the Rietveld refinement program BGMN,” J. Appl. Crystallogr. 48, 1573–1580 (2015).

    Article  Google Scholar 

  11. V. A. Drits and A. G. Kossovskaya, Clay Minerals: Smectites and Mixed–Layer Minerals (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. V. A. Drits G. Besson, and F. Muller, “An improved model for structural transformations of heat–treated aluminous dioctahedral 2:1 layer silicates,” Clay Clay Miner. 43 (6), 718–731 (1995).

    Article  Google Scholar 

  13. V. C. Farmer, and J. D Russell, “The infra-red spectra of layer silicates,” Spectrochim. Acta 20, 1149–1173 (1964).

    Article  Google Scholar 

  14. V. P. Finevich, N. A. Allert, T. R. Karpova, and V. K. Duplyakin, “Composition nanomaterials on the basis of acid-activated montmorillonites,” Ross. Khim. Zh. (Zh. Ross. Khim. O-va im. D.I. Mendeleeva), 51 (4), 69–74 (2007).

  15. R. L. Frost, J. T. Kloprogge, and Z. Ding, “The Garfield and Uley nontronites–an infrared spectroscopic comparison,” Spectrochimica Acta, Part A 58, 1881–1894 (2002).

    Google Scholar 

  16. N. I. Gorbunov, I. G. Tsyurupa, and E. A. Shurygina, X‑ray Patterns, Thermal and Dehydration Curves of Minerals Occurred in Soils and Clays, Ed. by I. V. Tyurin and N. I. Gorbunov, (Akad. Naus SSSR, Moscow, 1952) [in Russian].

    Google Scholar 

  17. GOST 21283–93. Bentonite Clay for Fine and Building Ceramics. Methods of Determination of Adsorption Index and Cation Exchange Capacity.

  18. S. Guggenheim, J. M. Adams, D. C. Bain, F. Bergaya, M. F. Brigatti, V. A. Drits, M. L. L. Formoso, N. E. Gala, T. Kogure, and H. Stanjek, “Summary of recommendations of nomenclature committees. Relevant to clay mineralogy: report of the Association Internationale Pour L’etude des Argiles (AIPEA) Nomenclature Committee for 2006,” Clay Clay Miner. 54 (6), 761–772 (2006).

    Article  Google Scholar 

  19. T. A. Gupalo, K. G. Kudinov, L. J. Jardine, and J. Williams, “Development of a comprehensive plan for scientific research, exploration, and design: creation of an underground radioactive waste isolation facility at the Nizhnekansky rock massif,” Waste Management 2005 Symposium Tucson AZ, 2005 (Tucson, 2005), UCRL-CONF-206438,

  20. H. He J. I. Guo, X. Xie, H. Lin, and L. Li, “A microstructural study of acid-activated montmorillonite from Choushan, China,” Clay Miner. 37, 337–344 (2002).

  21. “IUPAC Manual of Symbols and Terminology,” Pure Appl. Chem. 31, 577 (1972).

  22. G. Jozefaciuk and G. Bowanko, “Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals,” Clay Clay Miner. 50, 771–783 (2002).

    Article  Google Scholar 

  23. A. P. Karnaukhov, Adsorption. Structure of Dispersed and Porous Materials (Nauka, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  24. S. C. Kheok and E. E. Lim, “Mechanism of palm oil bleaching by montmorillonites clay activated at various acid concentrations,” J. Am. Oil Chem. Soc. 59, 129–131 (1982).

    Article  Google Scholar 

  25. P. Komadel, “Structure and chemical characteristics of modified clays,” Natural Microporous Materials in Environmental Technology, Ed. by P.Misealides, F. Maca’sˇek, T. J. Pinnavaia, and C. Colella (Kluwer, 1999), pp. 3–18.

  26. P. Komadel, “Chemically modified smectites,” Clay Miner. 38, 127–138 (2003).

    Article  Google Scholar 

  27. P. Komadel and J. Madejova, “Acid activations of clay minerals,” Handbook of Clay Science. Developments in Clay Science, Ed. by F. Bergaya, B. K. G. Theng, and G. Lagaly, (Elsevier, Amsterdam, 2006), pp. 263–271.

    Google Scholar 

  28. P. Komadel, D. Schmidt, J. Medejova, and J. Cicel, “Alteration of smectites by treatment with hydrochloric acid and sodium carbonate solutions,” Appl. Clay Sci. 5, 113–122 (1990).

    Article  Google Scholar 

  29. P. Komadel, J. Bujdak, J. Madejova, V. Sucha, and F. Elsass, “Effect of non-swelling layers on the dissolution of reduced–charge montmorillonite in hydrochloric acid,” Clay Miner. 31, 333–345 (1996).

    Article  Google Scholar 

  30. V. V. Krupskaya, S. V. Zakusin, O. V. Dorzhieva, M. S. Chernov, and E. A. Tyupina, “The surface properties and Cs adsorption of natural and acid–modified montmorillonites,” Proceedings from Second Workshop, Final Conference of the BELBaR Project (Berlin, 2016), pp. 173–175.

  31. V. V. Krupskaya, S. V. Zakusin, E. A. Tyupina, and M. S. Chernov, “Peculiarities of Cs sorption in bentonite barrier systems during burial of solid radioactive wastes,” Gorn. Zh., No. 2, 81–87 (2016).

  32. V. Krupskaya, S. Zakusin, E. Tyupina, O. Dorzhieva, A. Zhukhlistov, P. Belousov, and M. Timofeeva, “Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions,” Minerals 7 (49), (2017). https://doi.org/10.3390/min7040049

  33. P. Kumar, R. V. Jasra, and T. S. G. Bhat, “Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation,” Industr. Eng. Chem. 34, 1440–1448 (1995).

    Article  Google Scholar 

  34. G. Lagaly and S. Ziesmer, “Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions,” Adv. Coll. Interf. Sci. 100–102, 105–128 (2003).

    Article  Google Scholar 

  35. J.-F. Lambert and G. Poncelet, “Acidity in pillared clays: origin and catalytic manifestations,” Topics Catal. 4, 43–56 (1997).

    Article  Google Scholar 

  36. N. P. Laverov, S. V. Yudintsev, B. T. Kochkin, and V. I. Malkovsky, “The Russian strategy of using crystalline rock as a repository for nuclear waste,” Elements 12, 253–256 (2016).

    Article  Google Scholar 

  37. N. P. Laverov, V. I. Velichkin, B. I. Omel’yanenko, S. V. Yudintsev, V. A. Petrov, and A. V. Bychkov, Isolation of Spent Nuclear Materials: Geological–Geochemical Principles. Volume 5. Environmental and Climatic Changes (IGEM RAN–IFZ RAN, Moscow, 2008) [in Russian].

  38. V. I. Malkovsky, Y. P. Dikov, E. E. Asadulin, and V. V. Krupskaya, “Influence of host rocks on composition of colloid particles in groundwater at the Karachai Lake site,” Clay Miner. 47 (3), 391–400 (2012).

    Article  Google Scholar 

  39. N. Mergelov, C. W. Mueller, I. Prater, I. Shorkunov, A.Dolgikh, E. Zazovskaya, V. Shishkov, V. Krupskaya, K. Abrosimov, A. Cherkinsky, and S. Goryachkin, “Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth,” Sci. Rept. 8 (1), 3367 (2018). https://doi.org/10.1038/s41598-018-21682-6

    Article  Google Scholar 

  40. J. Madejova and P. Komadel, “Baseline studies of the clay minerals society source clays: infrared methods,” Clay Clay Miner. 49 (5), 410–432 (2001).

    Article  Google Scholar 

  41. J. Madejova and P. Komadel, “Information available from infrared spectra of the fine fractions of bentonites. The application of vibration spectroscopy to clay minerals and layered double hydroxides,” CMS Workshop Lectures, Ed. by J. T. Kloprogge (Aurora, CO: The Clay Minerals Society, 2005), Vol. 13, pp. 65–98.

  42. D. M. Moore and R.C. Reynolds, Jr., X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd Ed. (Oxford University Press, 1997).

    Google Scholar 

  43. D. A. Morgan, D. B. Shaw, T. C. Sidebottom, T. C. Soon, and R. S. Taylor, “The function of bleaching earth in the processing of palm, palm kernel and coconut oils,” J. Am. Oil Chem. Soc. 62, 292–299 (1985).

    Article  Google Scholar 

  44. B. F. W. Ngouana and A. G. Kalinichev, “Structural arrangements of isomorphic substitutions in smectites: Molecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs–montmorillonite revisited with new clay models,” J. Physic. Chem. 118, 12758–12773 (2014).

    Google Scholar 

  45. L. Novikova, L. Belchinskaya, V. Krupskaya, F. Roessner, and A. Zhabin, “Effect of acid and alkaline treatment on physical–chemical properties of surface of natural glauconite,” Sorpt. Chromatogr. Proc. 15, 730–740 (2015).

    Google Scholar 

  46. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and V. V. Krupskaya, “Thermochemical study of natural montmorillonite,” Geochem. Int. 51 (6), 484–494 (2013).

    Article  Google Scholar 

  47. K. Okada, N. Arimitsu, Y. Kameshima, A. Nakajima, and K. J. D. MacKenzie, “Solid acidity of 2 : 1 type clay minerals activated by selective leaching,” Appl. Clay Sci. 31(3–4), 185–193 (2006).

    Article  Google Scholar 

  48. V. I. Osipov and V. N. Sokolov, Clays and Their Properties. Composition, Structure, and Formation of Properties (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  49. T. Pagano, M. Sergio, L. Glisenti, W. Diano, and M. A. Grompone, “Use of pillared montmorillonites to eliminate chlorophyll from rice bran oil,” Ing. Quim. 19, 11–19 (2001).

    Google Scholar 

  50. J. E. Post and D. L. Bish, “Rietveld refinement of crystal structures using powder X–ray diffraction data,” Rev. Mineral. Geochem. 20, 277–308 (1989).

    Google Scholar 

  51. Protection of Groundwaters from Pollutions in the Area of Projected Tailing Dumps, Ed. by V. I. Sergeev (MGU, Moscow, 1992) [in Russian].

    Google Scholar 

  52. R. Pusch, S. Knutsson, L. Al-Taie, and M. H. Mohammed, “Optimal ways of disposal of highly radioactive waste,” Nat. Sci. 4, Sp. Iss., 906–918 (2012).

  53. C. N. Rhodes and D. R. Brown, “Catalytic activity of acid-treated montmorillonite in polar and nonpolar reaction media,” Catal. Lett. 24, 285–291 (1994).

    Article  Google Scholar 

  54. J. Rouquerolt, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids,” Pure Appl. Chem. 66, 1739–1758 (1994).

    Article  Google Scholar 

  55. A. Rybalchenko, M. Pimenov, and P. Kostin, “Injection disposal of hazardous and industrial wastes, scientific and engineering aspects,” Deep Injection Disposal of Liquid Radioactive Waste in Russia (Academic Press, New York, 1998).

    Google Scholar 

  56. A. I. Rybalchenko, M. K. Pimenov, V. M. Kurochkin, E. N. Kamnev, V. M. Korotkevich, A. A. Zubkov, and R. R. Khafizov, “Deep injection disposal of liquid radioactive waste in Russia, 1963–2002: Results and Consequences,” Develop. Water Sci. 52, 13–19 (2005).

    Google Scholar 

  57. P. Sellin and O. X. Leupin, “The use of clay as an engineered barrier in radioactive–waste management – a review,” Clay Clay Miner. 61, № 6, 477–498 (2013).

    Article  Google Scholar 

  58. E. M. Sergeev, G. A. Golodovskaya, R. S. Ziangirov, et al., Ground Science, 4th Ed., (MGU, Moscow, 1983) [in Russian].

    Google Scholar 

  59. R. Sutton and G. Sposito, “Molecular simulation of interlayer structure and dynamics in 12.4 Å Cs-smectite hydrates,” J. Colloid Interf. Sci. 237, 174–184 (2001).

    Article  Google Scholar 

  60. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem. 87, 1051–1069 (2015).

    Article  Google Scholar 

  61. M. N. Timofeeva, V. N. Panchenko, A. Gil, S. V. Zakusin, V. V. Krupskaya, K. P. Volcho, and M. A. Vicente, “Effect of structure and acidity of acid modified clay materials on synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol,” J. Mol Catal A–Chem. 414, 160–166 (2015a).

    Article  Google Scholar 

  62. M. N. Timofeeva, K. P. Volcho, O. S. Mikhalchenko, V. N. Panchenko, V. V. Krupskaya, S. V. Tsybulya, A. Gil, M. A. Vicente, and N. F. Salakhutdinov, “Synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol over acid modified montmorillonite clays: effect of acidity on the Prins cyclization,” J. Mol. Catal A-Chem. 398, 26–34 (2015b).

    Article  Google Scholar 

  63. M. N. Timofeeva, V. N. Panchenko, K. P. Volcho, S. V. Zakusin, V. V. Krupskaya, A. Gil, O. S. Mikhalchenko, and M. A. Vicente, “Effect of acid modification of kaolin and metakaolin on Brønsted acidity and catalytic properties in the synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol,” J. Mol. Catal. A-Chem. 414, 160–166 (2016).

    Article  Google Scholar 

  64. M. N. Timofeeva, V. N. Panchenko, V. V. Krupskaya, A. Gil, and M. A. Vicente, “Effect of nitric acid modification of montmorillonite clay on synthesis of sotketal from glycerol and acetone,” Catal. Commun. 90, 65–69 (2017).

    Article  Google Scholar 

  65. I. Tkac, P. Komadel, and D. Muller, “Acid-treated montmorillonites—a study by 29Si and 27Al MAS NMR,” Clay Miner. 29, 11–19 (1994).

    Article  Google Scholar 

  66. I. V. Tokarev, V. G. Rumynin, A. A. Zubkov, S. P. Pozdnyakov, V. A. Polyakov, V. Yu. Kuznetsov, “Assessment of the long–term safety of radioactive waste disposal: 1. Paleoreconstruction of groundwater formation conditions,” Water Resour. 36 (2), 206–213 (2009).

    Article  Google Scholar 

  67. Z. P. Tomić, S. B. Antić Mladenović, B. M. Babić, V. A. Poharc Logar, A. R. Đorđević, S. B. Cupać, “Modification of smectite structure by sulfuric acid and characteristics of the modified smectite,” J. Agricult. Sci. 56(1), 25–35 (2011).

    Google Scholar 

  68. A. I. Tuchkova and E. A. Tyupina, “Obtaining modified bentonite for vacuum purification of oils from 137Cs,” Perspectiv. Mater., No. 10, 307–311 (2011).

  69. B. Tyagi, C. D. Chudasama, and R. V. Jasra, “Determination of structural modification in acid activated montmorillonite clay by FT–IR spectroscopy,” Spectrochim. Acta, Part A, 64, 273–278 (2006).

    Article  Google Scholar 

  70. E. A. Tyupina, A. I. Tuchkova, and V. B. Timerkaev, “Sorption purification of liquid organic wastes from 137Cs, Perspectiv. Mater., No. 8, 329–333 (2010).

  71. S. S. Utkin and. I. Linge, “Decommissioning strategy for liquid low–level radioactive waste surface storage water reservoir,” J. Environ. Radioact. (2016). doi.org/ https://doi.org/10.1016/j.jenvrad.2016.11.011

  72. H. van Olphen, An Introduction to Clay Colloid Chemistry (Wiley-Interscience, New York, 1963).

    Google Scholar 

  73. M. A. Vicente, M. Sua’rez Barrios, J. D. Lo’pez Gonza’lez, and M. A. Ban˜ares Mun˜oz, “Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite,” Langmuir 12, 566–572 (1996).

    Article  Google Scholar 

  74. M. J. Wilson, Rock-Forming Minerals. Sheet Silicates: Clays Minerals (The Geological Society, London 2013).

    Google Scholar 

  75. S. V. Zakusin, V. V. Krupskaya, O. V. Dorzhieva, A. P. Zhukhlistov, and E. A. Tyupina, “Modification of adsorption properties of montmorillonite by the thermochemical treatment,” Sorption Chromatogr. Proc. 16 (6), 281–289 (2015).

    Google Scholar 

  76. A. A. Zubkov, B. G. Balakhonov, V. A. Sukhorukov, M. D. Noskov, A. G. Kessler, A. N. Zhiganov, E. V. Zakharova, E. N. Darskaya, G. F. Egorov, and A. D. Istomin, “Radionuclide distribution in a sandstone injection zone in the course of acidic liquid radioactive waste disposal,” Develop. Water Sci. 52, 491–500 (2005).

    Google Scholar 

  77. B. B. Zviagina D. K. McCarty, J. Srodon, and V. Drits, “Interpretation of infra-red spectra of dioctahedral smectites in the region of OH-stretching vibration,” Clay Clay Miner. 52(4), 399–410 (2004).

Download references

ACKNOWLEDGMENTS

S.A. Garanina, leading engineer of the Moscow State University (X-ray diffraction), A.M. Zybinskii (VIMS, analysis of composition of adsorption complex) are thanked for help in analytical studies.

Experimental studies were partially performed using equipment purchased in the framework of the Program of the Development of Moscow State University (Ultima-IV, Rigaku X-ray diffractometer and Carl Zeiss, LEO 1450VP electron microscope). The works were supported by the Russian Science Foundation (project no. 16-17-10270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Krupskaya, S. V. Zakusin, E. A. Tyupina, O. V. Dorzhieva, M. S. Chernov or Ya. V. Bychkova.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupskaya, V.V., Zakusin, S.V., Tyupina, E.A. et al. Transformation of Structure and Adsorption Properties of Montmorillonite under Thermochemical Treatment. Geochem. Int. 57, 314–330 (2019). https://doi.org/10.1134/S0016702919030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919030066

Keywords:

Navigation