Skip to main content
Log in

Evidence for large scale fractionation of carbon isotopes and of nitrogen impurity during crystallization of gem quality cubic diamonds from placers of North Yakutia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The spatial distribution of carbon and nitrogen isotopes and of nitrogen concentrations is studied in detail in three gem quality cubic diamonds of variety II according to Orlov’s classification. Combined with the data on composition of fluid inclusions our results point to the crystallization of the diamonds from a presumably oxidized carbonate fluid. It is shown that in the growth direction δ13C of the diamond becomes systematically lighter by 2–3‰ (from –13.7 to –15.6‰ for one profile and from –11.7 to –14.1‰ for a second profile). Simultaneously, we observe substantial decrease in the nitrogen concentration (from 400–1000 to 10–30 at ppm) and a previously unrecognized enrichment of nitrogen in light isotope, exceeding 30‰. The systematic and substantial changes of the chemical and isotopic composition can be explained using the Burton-Prim-Slichter model, which relates partition coefficients of an impurity with the crystal growth rate. It is shown that changes in effective partition coefficients due to a gradual decrease in crystal growth rate describes fairly well the observed scale of the chemical and isotopic variations if the diamond-fluid partition coefficient for nitrogen is significantly smaller than unity. This model shows that nitrogen isotopic composition in diamond may result from isotopic fractionation during growth and not reflect isotopic composition of the mantle fluid. Furthermore, it is shown that the infra-red absorption at 1332 сm-1 is an integral part of the Y-defect spectrum. In the studied natural diamonds the 1290 сm-1 IR absorption band does not correlate with boron concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. B. Bokii, G. N. Bezrukov, Yu. A. Klyuev, A. M. Naletov, and V. I. Nepsha, Natural and Synthetic Diamonds (Nauka, Moscow, 1986)[in Russian].

    Google Scholar 

  • Y. Bottinga, “Carbon isotope fractionation between graphite, diamond and carbon dioxide,” Earth Planet. Sci. Lett. 5, 301–307 (1968).

    Article  Google Scholar 

  • S. R. Boyd, F. Pineau, and M. Javoy, “Modelling the growth of natural diamonds,” Chem. Geol. 116 (1) 29–42 (1994).

    Article  Google Scholar 

  • S. R. Boyd, D. P. Mattey, C. T. Pillinger, H. J. Milledge, M. Mendelssohn, and M. Seal, “Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones,” Earth Planet. Sci. Lett. 86 (2–4), 341–353 (1987).

    Article  Google Scholar 

  • G. P. Bulanova, D. G. Pearson, E. H. Hauri, and B. J. Griffin, “Carbon and nitrogen isotope systematics within a sector-growth diamond from the Mir kimberlite, Yakutia,” Chem. Geol. 188 (1), 105–123 (2002).

    Article  Google Scholar 

  • J. A. Burton, R. C. Prim, and W. P. Slichter, “The distribution of solute in crystals grown from the melt. Part I. Theoretical,” J. Chem. Phys. 21 (11), 1987–1991 (1953).

    Article  Google Scholar 

  • P. Cartigny, J. W. Harris, and M. Javoy, “Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds,” Earth Planet. Sci. Lett. 185(1), 85–98 (2001).

    Article  Google Scholar 

  • P. Cartigny, M. Palot, E. Thomassot, and J. W. Harris, “Diamond formation: a stable isotope perspective,” Annu. Rev. Earth Planet. Sci. 42, 699–732 (2014).

    Article  Google Scholar 

  • C. D. Clark and S. T. Davey, “One-phonon infrared absorption in diamond,” J. Phys. C: Sol. St. Phys. 17, 1127–1140 (1984).

    Article  Google Scholar 

  • P. Deines, “The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition,” Geochim. Cosmochim. Acta 44(7), 943–961 (1980).

    Article  Google Scholar 

  • I. C. W. Fitzsimons, B. Harte, I. L. Chinn, J. J. Gurney, and W. R. Taylor, “Extreme chemical variation in complex diamonds from George Creek, Colorado: a SIMS study of carbon isotope composition and nitrogen abundance,” Mineral. Mag. 63 (6), 857–878 (1999).

    Article  Google Scholar 

  • E. M. Galimov, “Variations of diamond isotope composition and their relation with conditions of diamond formation,” Geokhimiya, No. 8, 1091–1118 (1984).

    Google Scholar 

  • E. M. Galimov, Yu. A. Klyuev, I. N. Ivanovskaya, V. V. Gritsik, V. I. Nepsha, V. I. Smirnov, N. I. Epishina, S. P. Plotnikova, and V. I. Koptil, “Correlation of carbon isotope composition, morphology, and structural features of monocrystalline diamonds from some Yakutian placers,” Dokl. Akad. Nauk SSSR 249 (4), 958–962 (1979).

    Google Scholar 

  • S. A. Grakhanov, V. I. Shatalov, V. A. Shtyrov, V. P. Kuchkin, and A. M. Suleimanov, Diamond Placers of Russia (Geo, Novosibirsk, 2007)[in Russian].

    Google Scholar 

  • T. E. Hainschwang, Fritsch, F. Notari, and B. Rondeau, “A new defect centre in type Ib diamond inducting one phonon infrared absorption: the Y centre,” Diam. Relat. Mater. 21, 120–126 (2012).

    Article  Google Scholar 

  • B. Harte, I. C. W. Fitzsimons, J. W. Harris, and M. L. Otter, “Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa,” Mineral. Mag. 63(6), 829–829 (1999).

    Article  Google Scholar 

  • I. N. Ivanovskaya, R. B. Zezin, and E. M. Galimov, “Distribution of carbon isotopes in zoned diamond crystals from Yakutian deposits,” Proceedings of 7th All-Union Symposium on Stable Isotopes in Geochemistry, Moscow, Russia, 1980 (Moscow, 1980), pp. 45–46[in Russian].

    Google Scholar 

  • M. Javoy, F. Pineau, and H. Delorme, “Carbon and nitrogen isotopes in the mantle,” Chem. Geol. 57 (1-2), 41–62 (1986).

    Article  Google Scholar 

  • I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. Van Wyk, and G. S. Woods, “Infrared absorption by the single nitrogen and A defect centres in diamond,” Phil. Mag. Pt. B. 69 (6), 1141–1147 (1994).

    Article  Google Scholar 

  • K. T. Koga, J. A. Van Orman, and M. J. Walter, “Diffusive relaxation of carbon and nitrogen isotope heterogeneity in diamond: a new thermochronometer,” Phys. Earth Planet. Inter. 139 (1) 35–43 (2003).

    Article  Google Scholar 

  • T. A. Nachal’naya, V. G. Malogolovets, G. A. Podzyarei, and S. A. Ivakhnenko, “EPR and IR spectroscopy in study of the defect-impurity composition of diamond single crystals,” Structure and Properties of Superhard materials, Methods of Study, Ed. by V. M. Perevertailo (ALKON, Kiev, 2004), pp. 200–255[in Russian].

    Google Scholar 

  • Yu. L. Orlov, Yu. P. Solodova, A. I. Kravtsov, O. I. Kropotova, V. A. Bobrov, and O. V. Sukhodol’skaya, “Difference of carbon isotope composition in the varieties of diamond crystals,” Nov. Dannye Mineral. SSSR 28, 99–104 (1979s).

    Google Scholar 

  • Yu. A. Orlov, Diamond Mineralogy (Nauka, Moscow, 1984)[in Russian].

    Google Scholar 

  • Yu. N. Palyanov, A. F. Khokhryakov, Yu. M. Borzdov, A. G. Sokol, V. A. Gusev, G. M. Rylov, and N. V. Sobolev, “Conditions of growth and true structure of syntheic diamond crystals,” Geol. Geofiz. 38 (5), 882–906 (1997).

    Google Scholar 

  • M. Palot, D. G. Pearson, R. A. Stern, T. Stachel, and J. W. Harris, “Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea),” Geochim. Cosmochim. Acta 139 26–46 (2014).

    Article  Google Scholar 

  • Y. N. Palyanov, Y. M. Borzdov, A. F. Khokhryakov, I. N. Kupriyanov, and A. G. Sokol, “Effect of nitrogen impurity on diamond crystal growth processes,” Cryst. Growth Des. 10 (7) 3169–3175 (2010).

    Article  Google Scholar 

  • D. C. Petts, T. Chacko, T. Stachel, R. A. Stern, and L. M. Heaman, “A nitrogen isotope fractionation factor between diamond and its parental fluid derived from detailed SIMS analysis of a gem diamond and theoretical calculations,” Chem. Geol. 410,188–200 (2015).

    Article  Google Scholar 

  • V. B. Polyakov and N.N. Kharlashina, “Effect of pressure on equilibrium isotopic fractionation,” Geochim. Cosmochim. Acta 58 (21) 4739–4750 (1994).

    Article  Google Scholar 

  • V. N. Reutsky, B. Harte, Y. M. Borzdov, and Y. N. Palyanov, “Monitoring diamond crystal growth, a combined experimental and SIMS study,” Eur. J. Mineral. 20 (3) 365–374 (2008).

    Article  Google Scholar 

  • V. N. Reutsky, Y. M. Borzdov, and Y. N. Palyanov, “Effect of diamond growth rate on carbon isotope fractionation in Fe–Ni–C system,” Diam. Relat. Mater. 21, 7–10 (2012).

    Article  Google Scholar 

  • V. Reutsky, Y. Borzdov, Y. Palyanov, A. Sokol, and O. Izokh, “Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions,” Contrib. Mineral. Petrol. 170:41 (2015).

    Google Scholar 

  • P. Richet, Y. Bottinga, and M. Javoy, “A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules,” Annu. Rev. Earth Planet. Sci. 5, 65–110 (1977).

    Article  Google Scholar 

  • A. A. Shiryaev, E. Izraeli, E. H. Hauri, O. D. Zakharchenko, and O. Navon, “Chemical, optical, and isotopic investigation of fibrous diamond from Brazil,” Russ. Geol. Geophys. 46 (12), 1185–1201 (2005a).

    Google Scholar 

  • A. A. Shiryaev, A. V. Spivak, Yu. A. Litvin, and V. S. Urusov, “Formation of nitrogen A-defects in diamond during growth in carbonate–carbon solutionsmelts: experiments at 5.5–8.5GPa,” Dokl. Earth Sci. 403 (4), 908–911 (2005b)

    Google Scholar 

  • A. A. Shiryaev, A. V. Fisenko, I. I. Vlasov, L. F. Semjonova, P. Nagel, and S. Schuppler, “Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites,” Geochim. Cosmochim. Acta 75, 3155–3166 (2011).

    Article  Google Scholar 

  • K. A. Smart, T. Chacko, T. Stachel, K. Muehlenbachs, R. A. Stern, and L. M. Heaman, “Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: a δ13C–N study of eclogitehosted diamonds from the Jericho kimberlite,” Geochim. Cosmochim. Acta 75 (20), 6027–6047 (2011).

    Article  Google Scholar 

  • K. V. Smit, S. B. Shirey, R. A. Stern, A. Steele, and W. Wang, “Diamond growth from C–H–N–O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C–δ15N–N content in Marange mixed-habit diamonds,” Lithos 265, 68–81 (2016).

    Article  Google Scholar 

  • T. Stachel, J. W. Harris, and K. Muehlenbachs, “Sources of carbon in inclusion bearing diamonds,” Lithos 112, 625–637 (2009).

    Article  Google Scholar 

  • P. K. Swart, C. T. Pillinger, H. J. Milledge, and M. Seal, “Carbon isotopic variation within individual diamonds,” Nature 303, 793–795 (1983).

    Article  Google Scholar 

  • E. Thomassot, P. Cartigny, J. W. Harris, and K. F. Viljoen, “Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith,” Earth Planet. Sci. Lett. 257 (3), 362–371 (2007).

    Article  Google Scholar 

  • S. V. Titkov, A. A. Shiryaev, N. N. Zudina, N. G. Zudin, and Yu. P. Solodova, “Defects in cubic diamonds from the placers in the northeastern Siberian Platform: results of IR microspectrometry,” Russ. Geol. Geophys. 56 (1–2), 354–362 (2015).

    Article  Google Scholar 

  • V. G. Vins and A. P. Yelisseyev, “Optical properties of CVD diamonds: before and after different post grown treatments,” Abstracts of International Conference on Coherent and Nonlinear Optics (Minsk, 2016).

    Google Scholar 

  • A. E. Voloshin, “Study of the initial transient in the onedimensional analytical models of impurity segregation during melt crystallization in the presence of convection,” Crystal. Rept. 58 (6), 939–947 (2013).

    Article  Google Scholar 

  • A. E. Voloshin, A. I. Prostomolotov, and N. A. Verezub, “On the accuracy of analytical models of impurity segregation during directional melt crystallization and their applicability for quantitative calculations,” J. Cryst. Growth 453. 188–197 (2016).

    Article  Google Scholar 

  • D. A. Zedgenizov, V. V. Kalinina, V. N. Reutsky, O. P. Yuryeva, and M. I. Rakhmanova, “Regular cuboid diamonds from placers on the northeastern Siberian platform,” Lithos 265, 125–137 (2016).

    Article  Google Scholar 

  • N. N. Zudina, S. V. Titkov, A. M. Sergeev, and N. G. Zudin, “Peculiarities of photoluminescence centers in cubic diamonds of different color from placers of northeastern Siberian Platform,” Zap. Ross. Mineral. O-va 117 (4), 57–72 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Reutsky or A. A. Shiryaev.

Additional information

Original Russian Text © V.N. Reutsky, A.A. Shiryaev, S.V. Titkov, M. Wiedenbeck, N.N. Zudina, 2017, published in Geokhimiya, 2017, No. 11, pp. 1003–1014.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reutsky, V.N., Shiryaev, A.A., Titkov, S.V. et al. Evidence for large scale fractionation of carbon isotopes and of nitrogen impurity during crystallization of gem quality cubic diamonds from placers of North Yakutia. Geochem. Int. 55, 988–999 (2017). https://doi.org/10.1134/S001670291711009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291711009X

Keywords

Navigation