Skip to main content
Log in

Migration behavior of platinum group elements in natural and technogeneous systems

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Data were summarized on the speciation of the main platinum group elements (PGE) platinum, palladium, and rhodium in aqueous media, forms of their input into the environment, and mechanisms of accumulation by natural sorptive phases. In some cases, the results obtained for PGE were compared with those for gold. Data on PGE speciation in a number of natural environments were analyzed. It was found that the main factor controlling the migration ability of PGE (Pd > Pt»Rh) is the formation of stable compounds with dissolved organic matter, hydroxyl, and thiosulfate ions and nanometer-sized particles. The transport of dissolved PGE species by marine, riverine, and technogeneous suspended materials was evaluated as an alternative way of an increase in PGE mobility. Significant differences were revealed in the migration behavior of platinum, palladium, and rhodium indicating the dominance of palladium dissipation in a dissolved state. The possibility of the prediction of PGE accumulation and dissipation in technogeneous systems was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • O. A. Alekin, Principles of Hydrochemistry (Nedra, Moscow, 1970) [in Russian].

    Google Scholar 

  • V. A. Alekseyev, L. N. Kochnova, Ya. V. Bychkova, and L. V. Krigman, “Extraction of hazardous elements by water from contaminated rocks: an experimental study,” Geochem. Int. 49 (12), 1239–1262 (2011).

    Article  Google Scholar 

  • L. I. Anikeeva, S. I. Andreev, and P. A. Aleksandrov, “Platinum potential of ferromanganese deposits of the World Ocean,” in Platinum of Russia (Geoinformmark, Moscow, 2002), Vol. 3, pp. 338–345 [in Russian].

    Google Scholar 

  • E. Y. Anthony and P. A. Williams, “Thiosulfate complexing of platinum group elements. Implications for supergene geochemistry,” Am. Chem. Soc. 550, 551–560 (1994).

    Google Scholar 

  • A. M. Asavin, I. V. Kubrakova, M. E. Mel’nikov, O. A. Tyutyunnik, and E. I. Chesalova, “Geochemical zoning in ferromanganese crusts of Ita–MaiTai Guyot,” Geochem. Int. 48 (5), 423–445 (2010).

    Article  Google Scholar 

  • V. A. Avramenko, S. Yu. Bratskaya, A. S. Yakushevich, A. V. Voit, V. V. Ivanov, and S. I. Ivannikov, “Humic acids in brown coals from the southern Russian Far East: general characteristics and interactions with precious metals,” Geochem. Int. 50 (5), 437–446 (2012).

    Article  Google Scholar 

  • M. Baalousha, M. Motelica-Heino, and P. L. Coustumer, “Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time,” Colloids Surf. A: Physicochem. Eng. Aspects 272, 48–55 (2006).

    Article  Google Scholar 

  • S. J. Barnes and W. Liu, “Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modeling,” Ore Geol. Rev. 44, 49–58 (2012).

    Article  Google Scholar 

  • L. G. Bondareva, and O. P. Kalyakina, “Study of Fe(III) accumulation by macrophyte Elodea canadensis using analytical methods: ion chromatography, ionometry, and spectrophotometry,” Zh. Sibirsk. Federal. Univ. Khimiya, No. 3, 269–276 (2008).

    Google Scholar 

  • S. B. Bortnikova, O. L. Gas’kova, and E. P. Bessonova, Geochemistry of Technogenic Systems (GEO, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  • S. Yu. Bratskaya, V. A. Solk, V. V. Ivanov, A. Yu. Ustinov, N. N. Barinov, and V. A. Avramenko, “A new approach to precious metals recovery from brown coals: correlation of recovery efficacy with the mechanism of metal–humic interactions,” Geochim. Cosmochim. Acta 73, 3301–3310 (2009).

    Article  Google Scholar 

  • T. M. Buslaeva and S. A. Simanova “State of platinum metals in solutions,” in Analytical Chemistry of Platinum Group Metals, Ed. by Yu. A. Zolotov, G. M. Varshal, and V. M. Ivanova (Editorial URSS, Moscow, 2003), pp. 23–26 [in Russian].

    Google Scholar 

  • C. R. M. Butt, P. A. Williams, D. J. Gray, I. D. M. Robertson, K. H. Schorin, H. M. Churchward, J. McAndrew, S. J. Barnes, and M. F. J. Tenhaeff, “Geochemical exploration for platinum group elements in weathered terrain,” Open File Rept. Ser. No. 1, 25 (2001).

    Google Scholar 

  • N. Chakraborty, A. Banerjee, S. Lahiri, A. Panda, A. N. Ghosh, and R. Pal, “Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon,” J. Appl. Phycol. 21, 145–152 (2009).

    Article  Google Scholar 

  • A. Chen and P. Holt-Hindle, “Platinum-based nanostructured materials: synthesis, properties, and applications,” Chem. Rev. 110, 3767–3804 (2010).

    Article  Google Scholar 

  • R. Clemens and N. Heikki, “Regional distribution of Pd, Pt and Au-emissions from the nickel industry on the Kola Peninsula, NW Russia, as seen in moss and humus samples,” in Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects, Ed. by F. Zereini, and F. Alt (Springer, Berlin–Heidelberg, 2006), p. 53.

    Google Scholar 

  • A. Cobelo-Garcia A. Turner, and G. E. Millward, “Fractionation and reactivity of platinum group elements during estuarine mixing,” Environ. Sci. Technol. 42 (4), 1096–1101 (2008).

    Article  Google Scholar 

  • A. Dubiella-Jackowska, B. Kudlak, Z. Polkowska, and J. Namiesnik, “Environmental fate of traffic-derived platinum group metals,” Critical Rev. Anal. Chem. 39, 251–271 (2009).

    Article  Google Scholar 

  • K. H. Ek, G. M. Morrison, and S. Rauch, “Environmental routes for platinum group elements to biological materials—a review,” Sci. Total Environ. 334–335, 21–38 (2004).

    Article  Google Scholar 

  • B. G. Ershov, “Nanoparticles of metals in aqueous solutions: electron, optical and catalytic properties,” Ross. Khim. Zh. (Zh. Ross. Khim. O-va im. Mendeleeva), 55 (3), 20–30 (2001).

    Google Scholar 

  • J. Folch, M. Lees, and M. Sloane-Stanly, “A simple method for isolation and purification of total lipids from animal tissues,” J. Biol. Chem. 226, 497–509 (1957).

    Google Scholar 

  • F. H. Frimmel, F. von der Kammer, and H.-C. Flemming, Colloidal Transport in Porous Media (Springer, Berlin–Heidelberg, 2007).

    Book  Google Scholar 

  • H. Fu and X. Quan, “Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation,” Chemosphere 63, 403–410 (2006).

    Article  Google Scholar 

  • J. Gaillardet, J. Viers, and B. Dupre, “Trace elements in river waters,” in Encyclopedia of Geochemistry, Ed. by C. P. Marshall and R. W. Fairbridge (Springer, 1999), Vol. 5, pp. 225–268.

    Google Scholar 

  • E. A. Galimov and L. A. Kodina, Study of Organic Matter and Gases in Sedimentary Sequences of the World Ocean (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  • M. L. Getsina, E. S. Toropchenova, S. N. Nabiullina, I. Ya. Koshcheeva, and I. V. Kubrakova, “Simulation of migration of colloid gold in surface natural waters,” Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, No. 4, NZ9001, (2012) doi 10.2205/2012NZ_ASEMPG

    Google Scholar 

  • B. R. Ginn and J. B. Fein, “The effect of species diversity on metal adsorption onto bacteria,” Geochim. Cosmochim. Acta 72, 3939–3948 (2008).

    Article  Google Scholar 

  • V. V. Gordeev, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2009).

    Google Scholar 

  • I. S. Gramberg, I. N. Goryainov, and A. S. Smekalov, “Limit of platinum solubility in ocean water in relation to the problem of abyssal placer formation,” Dokl. Earth Sci. 349A (6), 966–968 (1996).

    Google Scholar 

  • B. Greene, M. Hosea, R. McPherson, M. Henrl, M. D. Alexander, and D. W. Darnail, “Interaction of gold (I) and gold (III) complexes with algal biomass,” Environ. Sci. Technol. 20, 627–632 (1986).

    Article  Google Scholar 

  • J. R. Hein, B. McIntyre, and A. Koschinsky, “The global enrichment of platinum group elements in marine ferromanganese crust,” Extended Abstract 10th International Platinum Symposium “Platinum-Group Elements—from Genesis to Beneficiation and Environmental Impact”, Oulu, Finland, 2005 (Oulu, 2005), pp. 98–101.

    Google Scholar 

  • J.-D. Hu, Yu. Zevi, X.-M. Kou, J. Xiao, X. Ju. Wang, and Ya. Jin, “Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions,” Sci. Total Environ. 408, 3477–3489 (2010).

    Article  Google Scholar 

  • I. Iavicoli, B. Bocca, G. Carelli, S. Caroli, S. Caimi, I. Alimonti, and L. Fontana, “Biomonitoring of tram drivers exposed to airborne platinum, rhodium and palladium,” Occupation. Environ. Health 81 (1), 109–114 (2007).

    Article  Google Scholar 

  • N. Jordan, N. Marmier, C. Lomenech, E. Giffaut, and J.-J. Ehrhardt, “Sorption of silicates on goethite, hematite, and magnetite: experiments and modeling,” J. Colloid Interface Sci. 312, 224–229 (2007).

    Article  Google Scholar 

  • A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, 1986).

    Google Scholar 

  • I. Ya. Koshcheeva, I. V. Kubrakova, N. V. Korsakova, and O. A. Tyutyunnik, “Solubility and migration ability of rhodium in natural conditions: model experimental data,” Geochem. Int. 54 (1), 624–632 (2016).

    Article  Google Scholar 

  • I. V. Kubrakova, G. M. Varshal, Yu. F. Pogrebnyak, and T. F. Kudinova, “Speciation of platinum and palladium migration in natural waters,” in Chemical Analysis of Marine Sediments, Ed. by E. A. Ostroumova (Nauka, Moscow, 1988), pp. 104–119.

    Google Scholar 

  • I. V. Kubrakova, I. Ya. Koshcheeva, O. A. Tyutyunnik, and A. M. Asavin, “Role of organic matter in the accumulation of platinum in oceanic ferromanganese deposits,” Geochem. Int. 48 (7), 655–663 (2010).

    Article  Google Scholar 

  • I. V. Kubrakova, A. V. Fortygin, S. G. Lobov, I. Ya. Koshcheeva, O. A. Tyutyunnik, and M. V. Mironenko, “Migration of platinum, palladium, and gold in the water systems of platinum deposits,” Geochem. Int. 49 (11), 1057–1071 (2011a).

    Article  Google Scholar 

  • I. V. Kubrakova, D. V. Pryazhnikov, I. Ya. Koshcheeva, O. A. Tyutyunnik, N. V. Korsakova, D. N. Chkhetiya, and L. V. Krigman, “Formation and migration behavior of gold (I) thiosulfate in aqueous systems of gold deposits (experimental study),” Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, No. 3, NZ6059, (2011b). doi 10.2205/2011NZ000189

    Google Scholar 

  • I. V. Kubrakova, A. V. Nikulin, I. Ya. Koshcheeva, and O. A. Tyutyunnik, “Platinum metals in the environment: content determination, behavior in natural systems,” Chem. Sustainable Develop. 20 (6), 593–603 (2012).

    Google Scholar 

  • M. F. Lengke, M. E. Fleet, and G. Southam, “Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)–thiosulfate and gold(III)–chloride complexes,” Langmuir. 22, 2780–2787 (2006).

    Article  Google Scholar 

  • M. L. Machesky, W. O. Andrade, and A. W. Rose, “Interactions of gold (III) chloride and elemental gold with peat-derived humic substances,” Chem. Geol. 102, 53–71 (1992).

    Article  Google Scholar 

  • Y. N. Mata, E. Torres, M. L. Blazquez, A. Ballester, F. Gonzalez, and J. A. Munoz, “Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus,” J. Hazard. Mater. 166, 612–618 (2009).

    Article  Google Scholar 

  • M. Moldovan, “Origin and fate of platinum group elements in the environment,” Anal. Bioanal. Chem. 388 (3), 537–540 (2007).

    Article  Google Scholar 

  • F. M. M. Morel, A. J. Milligan, and M. A. Saito, “Marine bioinorganic chemistry. The role of trace metals in the oceanic cycles of major nutrients,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, 2003), Vol. 6, pp. 113–143.

    Article  Google Scholar 

  • V. K. Nemerov, E. A. Razvozzhaeva, A. M. Spiridonov, B. G. Sukhov, and B. A. Trofimov, “Nanodispersed state of metals and their migration in carbonaceous natural media,” Dokl. Earth Sci. 425 (2), 334–337 (2009).

    Article  Google Scholar 

  • D. S. Orlov, L. K. Sadovnikova, and A. L. Sarova, “Comparative study of sorption consumption of heavy metals by humic acids of different origin,” Dokl. Akad. Nauk 345 (4), 535–537 (1995).

    Google Scholar 

  • L. P. Plyusnina G. G. Likhoidov, and Zh. A. Shcheka, “Experimental modeling of platinum behavior under hydrothermal conditions (300–500°C and 1 kbar),” Geochem. Int. 45 (11), 1124–1130 (2007).

    Article  Google Scholar 

  • D. V. Pryazhnikov, M. S. Kiseleva, and I. V. Kubrakova, “Magnetic surface-modified nano-sized sorbent for MSSE–HPLC–UV determination of 4-nonylphenol in natural water objects,” Analitika and Kontrol’ 19 (3), 220–229 (2015).

    Google Scholar 

  • K. Ravindra, L. Bencs, and R. Van Grieken, “Platinum group elements in the environment and their health risk,” Sci. Total Environ. 318, 1–43 (2004).

    Article  Google Scholar 

  • E. A. Razvozzhaeva, V. Yu. Prokof’ev, A. M. Spiridonov, D. Kh. Martikhaev, and S. I. Prokopchuk, “Precious metals and carbonaceous substance in ores of the Sukhoi Log Deposit (eastern Siberia, Russia),” Geol. Ore Deposits 44 (2), 103–110 (2002).

    Google Scholar 

  • F. Reith, S. G. Campbell, A. S. Ball, A. Pringe, and G. Southam, “Platinum in Earth surface environments,” Earth-Science Rev. 131, 1–21 (2014).

    Article  Google Scholar 

  • D. C. Sassani and E. L. Shock, “Solubility and transport of platinum-group elements in supercritical fluids: summary and estimates of thermodynamic properties of ruthenium, rhodium, palladium and platinum solids aqueous ions, and complexes to 1000°C and 5 kbar,” Geochim. Cosmochim. Acta 62 (15), 2643–2671 (1998).

    Article  Google Scholar 

  • I. Savvaidis, V. I. Karamushka, H. Lee, and J. T. Trevors, “Micro-organism–gold interactions,” BioMetals 11, 69–78 (1998).

    Article  Google Scholar 

  • V. V. Seredin, “Distribution and formation conditions of noble metal mineralization in coal-bearing basins,” Geol. Ore Deposits 49 (1), 1–30 (2007).

    Article  Google Scholar 

  • P. Sobrova, J. Zehnalek, V. Adam, M. Beklova, and R. Kizek, “The effects on soil/water/plant/animal systems by platinum group elements,” Cent. Eur. J. Chem. 10 (5), 1369–1382 (2012).

    Google Scholar 

  • B. R. Tagirov and N. N. Baranova, “The state of palladium in sulfide hydrothermal solutions: experimental solubility study,” Geochem. Int. 47 (12), 1234–1242 (2009).

    Article  Google Scholar 

  • B. R. Tagirov, N. N. Baranova, A. V. Zotov, N. N. Akinfiev, N. A. Polotnyanko, N. D. Shikina, L. A. Koroleva, Yu. V. Shvarov, and E. N. Bastrakov, “The speciation and transport of palladium in hydrothermal fluids: experimental modeling and thermodynamic constraints,” Geochim. Cosmochim. Acta 117, 348–373 (2013).

    Article  Google Scholar 

  • B. R. Tagirov, N. N. Baranova, and Ya. V. Bychkova, “Thermodynamic properties of platinum chloride complexes in aqueous solutions: derivation of consistent parameters from literature data and experiments on Pt(cr) solubility at 400–475°C and 1 kbar,” Geochem. Int. 53 (4), 327–340 (2015).

    Article  Google Scholar 

  • E. Tombácz, I. Y. Tóth, D. Nesztor, E. Illés, A. Hajdú, M. Szekeres, and L. Vékás, “Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance,” Colloids Surf. A: Physicochem. Eng. Asp. 435, 91–96 (2013).

    Article  Google Scholar 

  • A. Turner, “Particle–water interactions of platinum group elements estuarine condition,” Mar. Chem. 103, 103–111 (2007).

    Article  Google Scholar 

  • O. A. Tyutyunnik S. N. Nabiullina, and I. V. Kubrakova, “Sorption behavior of platinum nanoparticles stabilized by low- and highly molecular organic ligands during interaction with components of geochemical barriers,” Eksp. Geokhim. 1 (1), (2014). http://exp-geochem.ru/JPdf/01_Planetology/01_Rus/29_01_Rus.pdf.

    Google Scholar 

  • O. A. Tyutyunnik, I. V. Kubrakova, and D. V. Pryazhnikov, “Formation and sorption behavior of the palladium thiosulfate complexes under natural conditions (model experiments),” Geochem. Int. 54 (1), 85–91 (2016).

    Article  Google Scholar 

  • J. M. Van Middlesworth and S. A. Wood, “The stability of palladium(II) hydroxide and hydroxyl–chloride complexes: an experimental solubility study at 25–85°C and 1 bar,” Geochim. Cosmochim. Acta 63, 1751–1765 (1999).

    Article  Google Scholar 

  • G. M. Varshal, Doctoral Dissertation in Chemistry (Moscow, 1994), pp. 138–158.

    Google Scholar 

  • G. M. Varshal, T. K. Velyukhanova, I. Ya. Koshcheeva, I. V. Kubrakova, and N. N. Baranova “Complexation of noble metals with fulvic acids and its geochemical role,” in Analytical Chemistry of Trace Elements (Nauka, Moscow, 1988), pp. 112–145 [in Russian].

    Google Scholar 

  • G. M. Varshal, I. Ya. Koshcheeva, T. K. Velyukhanova, D. N. Chkhetiya, O. A. Tyutyunnik, and Zh.M. Grinevskaya, “Sorption of heavy metals and isotope carriers of long-lived radionuclides on humic acids: I. sorption of cesium(I), strontium(II), cerium(III), and ruthenium(IV),” Geochem. Int. 34 (11), 997–1001 (1996).

    Google Scholar 

  • G. M. Varshal, T. K. Velyukhanova, D. N. Chkhetiya, Yu. V. Kholin, T. V. Shumskaya, O. A. Tyutyunnik, I. Ya. Koshcheeva, and A. V. Korochantsev, “Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales,” Lithol. Miner. Resour. 35 (6), 538–545 (2000).

    Article  Google Scholar 

  • I. E. Vasilyeva, E. V. Shabanova, and E. A. Razvozzhaeva, “Noble metals in the insoluble carbonaceous substance of black shales and ores: direct atomic emission data,” Geochem. Int. 50 (9), 771–776 (2012).

    Article  Google Scholar 

  • L. Weng, W. H. van Riemsdijk, and T. Hiemstra, “Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength,” J. Colloid Interface Sci. 314, 107–118 (2007).

    Article  Google Scholar 

  • S. A. Wood, “The interaction of dissolved platinum with fulvic acid and simple organic acid analogues in aqueous solutions,” Can. Mineral. 28, 665–673 (1990).

    Google Scholar 

  • S. A. Wood and C. Normand, “Mobility of palladium chloride complexes in mafic rocks: insights from a flowthrough experiment at 25°C using air-saturated, acidic, and Cl-rich solutions,” Mineral. Petrol. 92, 81–97 (2008).

    Article  Google Scholar 

  • S. A. Wood, B. W. Mountain, and P. Pan, “The aqueous geochemistry of platinum, palladium and gold; recent experimental constraints and a reevaluation of theoretical predictions,” Can. Mineral. 30, 955–982 (1992).

    Google Scholar 

  • F. Zereini and F. Alt, Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects (Springer, Berlin–Heidelberg, 2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kubrakova.

Additional information

Original Russian Text © I.V. Kubrakova, O.A. Tyutyunnik, I.Ya. Koshcheeva, A.Yu. Sadagov, S.N. Nabiullina, 2017, published in Geokhimiya, 2017, No. 1, pp. 68–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubrakova, I.V., Tyutyunnik, O.A., Koshcheeva, I.Y. et al. Migration behavior of platinum group elements in natural and technogeneous systems. Geochem. Int. 55, 108–124 (2017). https://doi.org/10.1134/S0016702916120053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916120053

Keywords

Navigation