Skip to main content
Log in

Geochemistry of Rohtas Limestone from Vindhyan Supergroup, Central India: Evidences of detrital input from felsic source

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Rohtas Limestone of Semri Group is conformably overlain by Lower Kaimur Group of Vindhyan Supergroup in the Son Valley, Central India. Lower Kaimur Group comprising Sasaram Sandstone, Ghurma Shale and Markundi Sandstone are dominantly quartz arenite in composition. While, Rohtas limestones are micritic carbonates with considerable input of detrital grains/rock fragments. Major oxide data shows that Lower Kaimur sandstone have SiO2 = 92 wt % while limestone exhibit SiO2 = 9.52 wt %, CaO = 47 wt %. Limestones exhibit Sr = 352 ppm, Zr = 20 ppm, while Lower Kaimur sandstones are enriched in Zr = 400 ppm, due to the presence of heavy minerals like zircon. The average limestone and sandstone shows a fractionated LREE pattern and a nearly flat HREE pattern with a small negative Eu anomaly. REE patterns and abundance of limestone are quite similar and comparable to sandstones from Lower Kaimur than to the pure micritic limestone. This indicates that the REE pattern and abundance of Rohtas limestone have been controlled by detrital components possibly derived from the similar source as that for Lower Kaimur sandstones. Apart from the similarity in the REE patterns of limestone and sandstone, the trace element ratios such as Ti/Zr, La/Sc, Th/Sc, Th/Co, Th/U, Zr/Sc, Ba/Sr, La/Th, La/Th, Zr/Hf, [La/Yb]N, [Ce/Yb]N, [Gd/Yb]N, [Sm/Nd]N, [La/Lu]N and Eu/Eu* strongly support the above inference. The ubiquitously comparable REE patterns and incompatible elemental ratios of Rohtas limestones and Lower Kaimur sandstones indicate their derivation from a similar felsic source. The geochemical signatures suggest that the Bundelkhand Gneissic Complex had significantly contributed sediments to the Vindhyan basin prior and during the deposition of Lower Kaimur Group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Ahmad, “Geology of the Vindhyan System in the eastern part of the Son Valley in Mirzapur district, U. P. Rec. Geol. Surv. India 96 (2), 1–41 (1971).

    Google Scholar 

  • J. S. Armstrong-Altrin, S. P. Verma, J. Madhavaraju, Y. I. Lee, and S. Ramasamy, “Geochemistry of Late Miocene Kudankulam limestones, South India,” Int. Geol. Rev. 45, 16–26 (2003).

    Article  Google Scholar 

  • J. B. Auden, “Vindhyan sedimentation in the Son Valley, Mirzapur district,” Mem. Geol. Surv. India, 62(2), 141–250 (1933).

    Google Scholar 

  • D. Bakkiaraj, R. Nagendra, R. Nagarajan, and J. S. Armstrong-Altrin, “Geochemistry of siliciclastic rocks of Sillakkudi Formation, Cauvery Basin, Southern India: implications for provenance,” J. Geol. Soc. India 76, 453–467 (2010).

    Article  Google Scholar 

  • Balaram, V. Gnaneswar T. and Anjaih, K.V. “International proficiency tests for analytical geochemistry laboratories: an assessment of accuracy and precision in routine geochemical analysis,” J. Geol. Soc. India 53, 417–423 (1999).

    Google Scholar 

  • V. Balaram, S. L. Ramesh, and K. V. Anjaiah, “New trace element and REE data in thirteen, GSF reference samples by ICP-MS,” Geostand. Newsl. 20, 71–78 (1996).

    Article  Google Scholar 

  • ai]Banerjee, S. and Jeevankumar, S. “Facies motif and paleogeography of Kheinjua Formation, Vindhyan Supergroup, eastern Son valley; Gond,” Geol. Mag. 7, 363–370 (2003).

    Google Scholar 

  • J. L. Banner and G. N. Hanson, “Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis,” Geochim. Cosmochim Acta 54, 3123–3137 (1990).

    Article  Google Scholar 

  • J. L. Banner, G. N. Hanson, and W. J. Meyers, “Water-rock interaction history of regionally extensive dolomites of the Burlington–Keokuk Formation (Mississippian): isotopic evidence,” in Sedimentology and Geochemistry of Dolostones, Ed. by V. Shukla and P. Baker, SEPM Spec. Publ. 43, 97–114 (1988).

    Google Scholar 

  • R. G. C. Bathurst, Carbonate Sediments and their Diagenesis, 2nd Edition, Developments in Sedimentology, 12, (Elsevier, Amsterdam, 1975).

    Google Scholar 

  • M. Bau, A. Koschinsky, P. Dulski, and J. R. Hein, “Comparison of the partitioning behaviors of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater,” Geochim. Cosmochim. Acta 60, 1709–1725 (1996).

    Article  Google Scholar 

  • P. K. Bose, S. Banerjee, and S. Sarkar, “Slope controlled seismic deformation and tectonic framework of deposition, Koldaha Shale, India,” Tectonophysics 269, 151–169 (1997).

    Article  Google Scholar 

  • P. K. Bose, S. Sarkar, S. Chakrabarty, and S. Banerjee, “Overview of Mesoto Neoproterozoie evolution of the Vindhyan basin, Central India,” Sediment. Geol. 142, 395–419 (2001).

    Google Scholar 

  • R. Chakrabarti, A. R.Basu, and A. Chakrabarti, “Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, Central India,” Precambrian Res. 159, 260–274 (2007).

    Article  Google Scholar 

  • C. Chakraborty and P. K. Bose, “Internal structures of sandwave in a tide-storm interactive system: Proterozoic Lower Quartzite Formation, India,” Sediment. Geol. 67, 133–142 (1990).

    Article  Google Scholar 

  • C. Chakraborty and A. Bhattacharya, “Fan-delta sedimentation in a foreland moat: Deoland Formation, Vindhyan Supergroup, Son valley,” in Recent Advances in Vindhyan Geology, Ed. by A. Bhattacharya Mem. Geol. Soc. India 36, 27–48 (1996).

    Google Scholar 

  • C. Chakraborty, “Forced regressive shoreface deposits: Proterozoic Ghaghar Formation, Vindhyan Supergroup, Son valley,” Indian J. Geol. 71, 265–275 (1999).

    Google Scholar 

  • P. P. Chakraborty, S. Dey, and S. P. Mohanty, “Proterozoic platform sequences of peninsular India: implications towards basin evolution and Supercontinent assembly,” J. Asian Earth Sci. 39 (6), 589–607 (2010).

    Article  Google Scholar 

  • C. Chakraborty, “Proterozoic intracontinental basin, the Vindhyan example,” J. Earth System Sci. 115 (1), 3–22 (2006).

    Article  Google Scholar 

  • S. K. Chanda and A. Bhattacharya, “Vindhyan sedimentation and paleogeography: Post-Auden developments,” in Geology of Vindhyachal, Ed. by K.S. Valdiya, S. B. Bhatia and V. K. Gaur (Hindusthan Publishers, 1982), pp. 88–101.

    Google Scholar 

  • B. K. Chatterjee and P. K. Sen, “Spectral analysis of a Precambrian limestone-shale sequence, lower Vindhyan, India,” Precambrian Res. 39, 139–149 (1988).

    Article  Google Scholar 

  • S. Chaudhuri and R. L. Cullers, “The distribution of rare earth elements in deeply buried Gulf coast sediments,” Chem. Geol. 24, 327–338 (1979).

    Article  Google Scholar 

  • K. C. Condie “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  • A. R. Crawford and W. Compston, “The age of Vindhyan system of Peninsular India,” Quarterly J. Geol. Soc. London 125, 351–371 (1970).

    Google Scholar 

  • R. Cullers, “Mineralogical and chemical changes of soil soil and stream sediments formed by intense weathering of Danburg granite, Georgia, USA,” Lithos 21, 301–314 (1988).

    Article  Google Scholar 

  • R. L. Cullers, T. Barett, R. Carlson, and B. Robinson, “Rare earth element and mineralogical changes in Holocene soil and stream sediments: A case study in the Wet Mountains, Colorado, U.S.A,” Chem. Geol. 63, 275–297 (1987).

    Article  Google Scholar 

  • W. E. Dean and M. A. Arthur, “Geochemical expressions of cyclicity in Cretaceous pelagic limestone sequences: Niobrara Formation, Western Interior Seaway,” SEPM Concepts Sedimentol. Paleontol. 6, 227–255 (1998).

    Google Scholar 

  • H. Dypvik and N. B. Harris, “Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios,” Chem. Geol. 181, 131–146 (2001).

    Article  Google Scholar 

  • C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and palaeosols, with implications for palaeoweathering conditions and provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  • P. W. Fralick and B. I. Kronberg, “Geochemical discrimination of clastic sedimentary rock sources,” Sediment. Geol. 113, 111–124 (1997).

    Article  Google Scholar 

  • H. E. Frimmel, “Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator,” Chem. Geol. 258, 338–353 (2009).

    Article  Google Scholar 

  • X. Fu, J. Wang, Y. Zeng, F. Tan, and J. He, “Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China,” Chemie der Erde, 71 (1), 21–30 (2011).

    Article  Google Scholar 

  • G. H. Girty, D. L. Ridge, C. Knaack, D. Johnsson, and R. K. Al-Riyami, “Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California,” J. Sed. Res. 66, 107–118 (1996).

    Google Scholar 

  • E. D. Goldberg, M. Koide, and R. A. Schmitt, “Rare earth distributions in the marine environment,” J. Geophys. Res. 68, 4209–4217 (1963).

    Article  Google Scholar 

  • S. J. Goldstein and S. B. Jacobsen, “Rare earth elements in river waters,” Earth Planet. Sci. Lett. 89, 35–47 (1988).

    Article  Google Scholar 

  • Sumant Gupta, K. C. Jain, V. C. Srivastava, and R. D. Mehrotra, “Depositional environment and tectonism during the sedimentation of the Semri and Kaimur Groups of rocks, Vindhyan Basin,” J. Palaeontol. Soc. India. 48, 181–190 (2003).

    Google Scholar 

  • J. Hammer, F. Junge, H. J. Rösler, S. Niese, B. Gleisberg, and G. Stiehl, “Element and isotope geochemical investigations of the Kupferschiefer in the vicinity of “Rote Faule”, indicating copper mineralization (Sagerhausen basin, G.D.R),” Chem. Geol. 83, 345–360 (1990).

    Google Scholar 

  • M. A. Haskin and L. A. Haskin, “Rare earths in European shales, a redetermination,” Science 154, 507–509 (1966).

    Google Scholar 

  • C. Klein and N. J. Beukes, “Geochemistry and sedimentology of a facies transistion from limestone to iron_formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa,” Econ. Geol. and the Bull. So. Econ. Geol. 84 (7), 1733–1774 (1989).

    Article  Google Scholar 

  • Akash Kumar and Talat Ahmad, “Geochemistry of mafic dykes in part of Chotanagpur Gneissic Complex: petrogenetic and tectonic implications,” Geochem. J. 41, 173–186 (2007).

    Article  Google Scholar 

  • J. Madhavaraju and S. Ramasamy, “Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu,” J. Geol. Soc. India 54, 291–301 (1999).

    Google Scholar 

  • V. P. Malviya, M. Arima, J. K. Pati, and Y. Kaneko, “Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in Mauranipur area: subduction related volcanism in Archean Bundelkhand craton, Central India,” J. Mineral. Petrol. Sci. 101,199–217 (2006).

    Article  Google Scholar 

  • S. M. McLennan and S. R. Taylor, “Sedimentary rocks and crustal evolution: tectonic setting and secular trends,” J. Geol. 99, 1–21 (1991).

    Article  Google Scholar 

  • S. M. McLennan, “Rare earth elements in sedimentary rocks, influence of provenance and sedimentary processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B.R. Lipin and G.A. MacKay, Miner. Soc. Am. 1989), pp. 169–200.

    Google Scholar 

  • Meenal Mishra and Shinjana Sen, “Provenance, tectonic setting and source-area weathering of Mesoproterozoic Kaimur Group, Vindhyan Supergroup, Central India,” Geol. Acta 10 (4), 1–12 (2012). doi: 10. 1344/105.000001

    Google Scholar 

  • R. C. Misra, ”The Vindhyan system. Presidential address,” Proc. 56th Indian Science Congress, 2, 111–142 (1969).

    Google Scholar 

  • M. E. A. Mondal, J. N. Goswami, M. P. Deomurari, and K. K. Sharma, “Ion microprobe 207Pb/206Pb ages of zircon from the Bundelkhand massif, northern India: implications for crustal evolution of the BundelkhandAravalli protocontinent,” Precambrian Res. 117, 85–100 (2002).

    Article  Google Scholar 

  • S. Morad, I. S. Al-Aasm, M. Sirat, and M. M. Sattar, “Vein calcite in Cretaceous carbonate reservoirs of Abu Dhabi: Record of origin of fluids and diagenetic conditions,” J. Geochem. Explor. 106, 156–170 (2010).

    Article  Google Scholar 

  • G. K. Muecke, C. Pride, and P. Sarkar, “Rare earth element geochemistry of regional metamorphic rocks,” Phys. Chem. Earth 11, 449–464 (1979).

    Article  Google Scholar 

  • R. W. Murray, M. R. Buchholtz Ten Brink, D. C. Gerlach, G. P. Russ III, and D. L. Jones, “Interoceanic variation in the rare earth, major and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP record,” Geochim. Cosmochim. Acta 56, 1897–1913 (1992).

    Article  Google Scholar 

  • R. Nagarajan, J. Madhavaraju, J. Armstrong-Altrin, and R. Nagendra, “Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India,” Geosci. J. 15 (1), 9–25 (2011).

    Article  Google Scholar 

  • S. M. Naqvi and J. J. M. Rodgers, Precambrian Geology of India (Oxford Univ. Press, 1987).

    Google Scholar 

  • D. Z. Piper, “Rare earth elements in the sedimentary cycle: a summary,” Chem. Geol. 14, 285–304 (1974).

    Article  Google Scholar 

  • H. W. Posamentier, G. P. Allen, D. P. James, and M. Tesson, “Forced regressions in sequence stratigraphic framework: concepts, examples, and exploration, and exploration significance,” Am. Ass. Petrol. Geol. Bulletin, 76, 1687–1709 (1992).

    Google Scholar 

  • R. Prakash, and S. Dalela, “Geology of Vindhyachal,” in Geology of Vindhyachal. A volume in honour of Prof. R. C. Mishra, Ed. by K. S. Valdiya, (Hindustan Publishing Corp., New Delhi, 1982), pp. 55–79.

    Google Scholar 

  • Radhakrishnan B. P. and Naqvi, S.M. “Precambrian continental crust of India and its evolution,” J. Geol. 94, 145–166 (1986).

    Article  Google Scholar 

  • S. N. Ram J. Shukla, A. G. Pramanik, B. K. Verma, C. Gyanesh, and M. S. N. Murthi, “Recent investigations in Vindhyan basin: implication for the basin tectonics,” Geol. Soc. India Mem. 36, 267–286 (1996).

    Google Scholar 

  • J. S. Ray, J. Veizer, and W. J. Davis, “C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events,” Precambrian Res. 121, 103–140 (2003).

    Article  Google Scholar 

  • M. Raza and S. M. Casshyap, “A tectono-sedimentary model of evolution of Middle Proterozoic Vindhyan basin,” Mem. Geol. Soc. India 36, 287–300 (1996).

    Google Scholar 

  • J. J. W. Rogers “The Dharwar craton and the assembly of peninsular India,” J. Geol. 94, 129–144 (1986).

    Article  Google Scholar 

  • S. Sarangi, K. Gopalan, and S. Kumar, “Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rhotas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution,” Precambrian Res. 132, 107–121 (2004).

    Article  Google Scholar 

  • A. Sarkar, D. K. Paul, and P. J. Potts, “Geochronology and geochemistry of the Mid-Archean trondhjemitic gneisses from the Bundelkhand craton, Central India,” in Recent Researchers in Geology, Ed. by A. K. Saha (Hindustan Publ., 1995), pp. 76–92.

    Google Scholar 

  • A. Sarkar, J. K. Bhalla, P. K. Bishui, S. N. Gupta, R. K. Singhai, and T. P. Upadhaya, “Tectonic discrimination of granitic rocks: studies on the early Proterozoic Bundelkhand complex, central India,” Ind. Min. 45, 103–112 (1994).

    Google Scholar 

  • J. Schieber, “The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins,” Sedimentology 33, 521–536 (1986).

    Article  Google Scholar 

  • K. K. Sharma, and A. Rahman, “Occurrence and petrogenesis of Loda Pahar trondhjemitic gneiss from Bundelkhand craton, central India: remnant of an early crust,” Curr. Sci. 69, 613–617 (1995).

    Google Scholar 

  • K. K. Sharma, “Geological Evolution of the Bundelkhand Craton and its Relicts in the Surrounding Region,” in N. Indian shield. Indian Precambrian, Eds. by B. S. Paliwal (Jodhpur-Scientific Publishers, 1998), pp. 33–43.

    Google Scholar 

  • E. R. Sholkovitz, W. M. Landing, and B. L. Lewis, “Ocean particle chemistry: the fractionation of the rare earth elements between suspended particles and seawater,” Geochim. Cosmochim. Acta 58, 1567–5801 (1994).

    Article  Google Scholar 

  • E. R. Sholkovitz, D. J. Piepgras, and S. B. Jacobsen, “The pore water chemistry of rare elements Buzzard Bay sediments,” Geochim. Cosmochim. Acta 53, 2847–2856 (1989).

    Article  Google Scholar 

  • S. Soni Chakraborty and V. K. Jain, “Vindhyan Super Group—A Review,” in Basins of Peninsular India, Ed. by B. P. Radhakrishnan (Purana, 1987), pp. 86–138.

    Google Scholar 

  • S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell Scientific Publications, Oxford, 1985).

    Google Scholar 

  • S. R. Taylor, “The application of trace element data to problems in petrology,” in Physics and Chemistry of the Earth, Ed. by L. A. Ahrens, S. K. Runcorn, and C. Urey, (Pergamon Press, 1965), vol. 6, pp. 135–213.

    Google Scholar 

  • S. Tlig and A. M’Rabet, “A comparative study of the Rare Earth element (REE) distributions within the lower Cretaceous dolomites and limestones of Central Tunisia,” Sedimentology 32, 897–907 (1985).

    Article  Google Scholar 

  • H. Wani and M. E. A. Mondal, “Petrological and geochemical evidence of the Paleoproterozoic and the MesoNeoproterozoic sedimentary rocks of the Bastar craton, Indian Peninsula: Implications on paleoweathering and Proterozoic crustal evolution,” J. Asian Earth Sci. 38, 220–232 (2010).

    Article  Google Scholar 

  • G. E. Webb and B. S. Kamber, “Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy,” Geochim. Cosmochim. Acta 64, 1557–1565 (2000)

    Article  Google Scholar 

  • S. M. Zainuddin and M. E. A. Mondal, “Trends of arc maturity in seduction-related Bundelkhand Batholith of Central India,” in The Precambrian, Ed. by B. S. Paliwal (Scientific Publishers, 1998), pp. 73–80.

    Google Scholar 

  • Y. Y. Zhao, Y. F. Zheng, and F. Chen, “Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China,” Chem. Geol. 265, 345–362 (2009).

    Article  Google Scholar 

  • S. Zhong and A. Mucci, “Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1atm, and high dissolved REE concentrations,” Geochim. Cosmochim. Acta 59, 443–453 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Mishra.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Mishra, M. Geochemistry of Rohtas Limestone from Vindhyan Supergroup, Central India: Evidences of detrital input from felsic source. Geochem. Int. 53, 1107–1122 (2015). https://doi.org/10.1134/S0016702915120095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915120095

Keywords

Navigation