Skip to main content
Log in

Laminarization of Flow with Heat Transfer in a Plane Channel with a Confuser

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The process of laminarization of turbulent flow with heat transfer in a plane confuser with a constant constriction angle is numerically simulated. The effect of the favorable longitudinal pressure gradient on the flow and heat transfer parameters is shown. The results of the calculations are compared with the experimental data on the heat transfer. The value of the acceleration parameter, at which flow in the channel becomes fully laminar, is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sternberg, “The transition from a turbulent to a laminar boundary layer,” US Army Bal. Res. Lab. Aberdeen, Rep. 906 (1954).

  2. A. S. Ginevskii, V. A. Ioselevich, A. V. Kolesnikov, et al., “Methods of calculation of turbulent boundary layers,” in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. Vol. 11 (Moscow, 1978), p. 155 [in Russian].

    Google Scholar 

  3. R. Narashima and K. R. Sreenivasan, “Relaminarization fluid flows,” Adv. Appl.Mech. 19, 221 (1979).

    Article  Google Scholar 

  4. B. A. Kader and A. M. Yaglom, “Effect of roughness and a longitudinal pressure gradient on turbulent boundary layers,” in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series. Vol. 18 (Moscow, 1984), p. 3 [in Russian].

    Google Scholar 

  5. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Transport equations for turbulence characteristics: models and results of calculations,” in: Advances in Science and Engineering. All-Union Institute of Science and Technical Information. Fluid Mech. Series, Vol. 22 (Moscow, 1988), p. 3. [in Russian]

    Google Scholar 

  6. P. H. Moretti and V. M. Kays, “Heat transfer in turbulent boundary layer with varying freestream velocity and varying surface temperature—an experimental study,” Int. J. HeatMass Transfer 8, 1187 (1965).

    Article  Google Scholar 

  7. K. R. Sreenivasan, “Laminariscent, relaminarizing and retransitional flows,” Acta Mech. 44, 1 (1982).

    Article  MATH  ADS  Google Scholar 

  8. M. A. Badry Narayanan and V. Ramjee, “On the criteria for reverse transition in a two-dimensional boundarylayer flow,” J. Fluid Mech. 35 (2), 225 (1969).

    Article  ADS  Google Scholar 

  9. A. N. Sekundov, “Application of a differential equation for turbulent viscosity to the analysis of plane nonself-similar flows,” Fluid Dynamics 6 (5), 828 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  10. E. P. Volchkov, M. S. Makarov, and A. Yu. Sakhnov, “Boundary layer with asymptotic favourable pressure gradient,” Int. J. HeatMass Transfer 53, 2837 (2010).

    Article  MATH  Google Scholar 

  11. C. Bourassa and F. O. Thomas, “An experimental investigation of a highly accelerated turbulent boundary layer,” J. FluidMech. 634, 359 (2009).

    Article  MATH  ADS  Google Scholar 

  12. M. B. Jones, I. Marusic, and A. E. Perry, “Evolution and structure of sink-flow turbulent boundary layers,” J. FluidMech. 428, 1 (2001).

    Article  MATH  ADS  Google Scholar 

  13. M. P. Escuder, A. Abdel-Hameed, M. W. Johnson, and C. J. Sutcliffe, “Laminarization and retransition of a turbulent boundary layer subjected to favourable pressure gradient,” Exp. Fluids 25, 491 (1998).

    Article  Google Scholar 

  14. C. A. Bankston, “The transition from turbulent to laminar gas flow in a heated pipe,” J. Heat Transfer 92 (4), 569 (1970).

    Article  Google Scholar 

  15. A. I. Leont'ev, A. N. Oblivin, and P. N. Romanenko, “Investigation of drag and heat transfer in turbulent air flows in axisymmetric channels with a longitudinal pressure gradient,” Zh. Prikl. Mekh. Tekhn. Fiz. 5, 17 (1961).

    Google Scholar 

  16. H. Tanaka and J.-I. Shimitzu, “Laminarization in low reynolds number turbulent duct flows,” J. Heat Transfer 99 (4), 682 (1977).

    Article  Google Scholar 

  17. H. Tanaka, H. Kawamura, A. Tateno, and S. Hatamiya, “Effect of laminarization and retransition on heat transfer for low reynolds number flows through a converging to constant area duct,” J. Heat Transfer 104 (2), 363 (1982).

    Article  Google Scholar 

  18. A. Talamelli, N. Fornaciari, K. Johan, A. Westin, and P. H. Alfredsson, “Experimental investigation of streaky structures in a relaminarizing boundary layer,” J. Turbulence 3, 018 (2002).

    Article  ADS  Google Scholar 

  19. M. Ichimiya, I. Nakamura, and S. Yamashita, “Properties of a relaminarizing turbulent boundary layer under a favorable pressure gradient,” Exp. Thermal Fluid Sci. 17 (1–2), 37 (1998).

    Article  Google Scholar 

  20. M. Ichimiya, Y. Nakase, I. Nakamura, S. Yamashita, J. Fukutomi, and M. Yoshikawa, “Properties of a relaminarizing turbulent boundary layer under a favorable pressure gradient (analysis of bursting structure with VITA technique),” Trans. Japan Soc.Mech. Engineers Part B 62 (594), 483 (1998).

    Article  Google Scholar 

  21. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1979).

    MATH  Google Scholar 

  22. U. R. Oriji, S. Karimisani, and P. G. Tucker, “RANS modeling of accelerating boundary layers,” J. Fluid Eng. Trans. ASME 137 (1), Paper No. A12 (2015).

    Google Scholar 

  23. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Three-parameter model of shear turbulence,” Fluid Dynamics 13 (3), 350 (1978).

    Article  MATH  ADS  Google Scholar 

  24. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Three-parameter model of turbulence. Heat transfer calculations,” Fluid Dynamics 21 (2), 200 (1986).

    Article  ADS  Google Scholar 

  25. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Transfer equation for turbulent heat flux. calculation of heat exchange in a pipe,” Fluid Dynamics 23 (6), 835 (1988).

    Article  MATH  ADS  Google Scholar 

  26. V. G. Lushchik, V. I. Sizov, and A. E. Yakubenko, “Using the narrow channel approximation for calculating turbulent flows in the nozzles of liquid rocket engines,” Teplofiz. Vys. Temp. 31 (5), 752 (1993).

    Google Scholar 

Download references

Acknowledgements

The study was carried out with the support of the Russian Foundation for Basic Research (project no. 17-08-00115) and the Council of Grants of the President of Russian Federation (no. SP-3993.2018.1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Lushchik, M. S. Makarova or A. I. Reshmin.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2019, No. 1, pp. 68–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushchik, V.G., Makarova, M.S. & Reshmin, A.I. Laminarization of Flow with Heat Transfer in a Plane Channel with a Confuser. Fluid Dyn 54, 67–76 (2019). https://doi.org/10.1134/S0015462819010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819010099

Keywords

Navigation