Skip to main content
Log in

New Method for the Preparation of 2,3-Disubstituted 2,3-Dihydrothiazolo[3,2-a]pyrimidines

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

A new approach to the synthesis of 2,3-disubstituted 2,3-dihydrothiazolo[3,2-a]pyrimidines under microwave activation conditions has been developed. The method consists in the nucleophilic addition of methanol to 2-arylmethylidene derivatives of thiazolo[3,2-a]pyrimidine followed by intramolecular rearrangement to form 3,5-diaryl-2,3-dihydrothiazolo[3,2-a]pyrimidine-2,6-dicarboxylates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Scheme 3.
Fig. 3.
Fig. 4.
Scheme 4.
Scheme 5.
Scheme 6.

Similar content being viewed by others

REFERENCES

  1. Cumming, J.G., McKenzie, C.L., Bowden, S.G., Campbell, D., Masters, D.J., Breed, J., and Jewsbury, P.J., Bioorg. Med. Chem. Lett., 2004, vol. 14, no. 21, pp. 5389–5394. https://doi.org/10.1016/j.bmcl.2004.08.007

    Article  CAS  Google Scholar 

  2. Abdel Moty, S.G., Hussein, M.A., Abdel Aziz, S.A., and Abou-Salim, M.A., Saudi Pharm. J., 2016, vol. 24, pp. 119–132. https://doi.org/10.1016/j.jsps.2013.12.016

    Article  Google Scholar 

  3. Keshari, A.K., Singh, A.K., and Saha, S., Mini-Rev. Med. Chem., 2017, vol. 17, p. 1488. https://doi.org/10.2174/1389557517666170216142113

    Article  CAS  Google Scholar 

  4. Hussein, M.A., Abdel Moty, S.G., Abdel Aziz, S.A., and Abou-Salim, M.A., Bull. Pharm. Sci., Assiut Univ., 2011, vol. 34, pp. 37–52. https://doi.org/10.21608/BFSA.2012.63216

    Article  CAS  Google Scholar 

  5. Sayed, H.H., Shamroukh, A.M., and Rashad, A.E., Acta Pharm., 2006, vol. 56, pp. 231–244.

    CAS  Google Scholar 

  6. Youssef, M.M. and Amin, M.A., Molecules, 2012, vol. 17, pp. 9652–9667. https://doi.org/10.3390/molecules17089652

    Article  CAS  Google Scholar 

  7. Maddila, S., Damu, G.L.V., Oseghe, E.O., Abafe, O.A., Venakata Rao, C., and Lavanya, P., J. Korean Chem. Soc., 2012, vol. 56, pp. 334–340. https://doi.org/10.5012/jkcs.2012.56.3.334

    Article  CAS  Google Scholar 

  8. Khalilpour, A., Asghari, S., and Pourshab, M., Chem. Biodivers., 2019, vol. 16, no. 5, e1800563. https://doi.org/10.1002/cbdv.201800563

    Article  CAS  Google Scholar 

  9. Izmest’ev, A.N., Vasileva, D.A., Melnikova, E.K., Kolotyrkina, N.G., Borisova, I.A., Kravchenko, A.N., and Gazieva, G.A., New J. Chem., 2019, vol. 43, pp. 1038–1052. https://doi.org/10.1039/C8NJ05058A

    Article  Google Scholar 

  10. Pansare, D.N., Shelke, R.N., and Shinde, D.B., J. Heterocycl. Chem., 2017, vol. 54, pp. 3077–3086. https://doi.org/10.1002/jhet.2919

    Article  CAS  Google Scholar 

  11. Nagarajaiah, H., Khazi, I.A.M., and Begum, N.S., J. Chem. Sci., 2015, vol. 127, no. 3, pp. 467–479. https://doi.org/10.1007/s12039-015-0797-y

    Article  CAS  Google Scholar 

  12. Zhao, D., Chen, C., Liu, H., Zheng, L., Tong, Y., Qu, D., and Han, S., Eur. J. Med. Chem., 2014, vol. 87, pp. 500–507. https://doi.org/10.1016/j.ejmech.2014.09.096

    Article  CAS  Google Scholar 

  13. Jin, C.-H., Jun, K.-Y., Lee, E., Kim, S., Kwon, Y., Kim, K., and Na, Y., Bioorg. Med. Chem., 2014, vol. 22, no. 17, pp. 4553–4565. https://doi.org/10.1016/j.bmc.2014.07.037

    Article  CAS  Google Scholar 

  14. Zhu, P., Fu, H., and Fang, H., Lett. Drug Des. Discov., 2017, vol. 14, no. 12, pp. 1382–1390. https://doi.org/10.2174/1570180814666170512123132

    Article  CAS  Google Scholar 

  15. Lebedyeva, I.O., Povstyanoy, M.V., Ryabitskii, A.B., and Povstyanoy, V.M., J. Heterocycl. Chem., 2010, vol. 47, no. 2, pp. 368–372. https://doi.org/10.1002/jhet.323

    Article  CAS  Google Scholar 

  16. Laurence, C. and Berthelot, M., Perspect. Drug Discov. Des., 2000, vol. 18, no. 1, pp. 39–60. https://doi.org/10.1023/A:1008743229409

    Article  CAS  Google Scholar 

  17. Singh, S., Schober, A., Gebinoga, M., and Gross, G.A., Tetrahedron Lett., 2011, vol. 52, no. 29, pp. 3814–3817. https://doi.org/10.1016/j.tetlet.2011.05.067

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Measurements were performed using equipment of the Distributed Shared Facility Spectral and Analytical Center for Study of Structure, Composition, and Properties of Substances and Materials, Kazan Scientific Center, Russian Academy of Sciences.

Funding

This work was financially supported by the Kazan Scientific Center, Russian Academy of Sciences, to provide State Assignment in Scientific Area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Agarkov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

The paper is presented to the thematic issue “Nitrogen heterocycles: synthesis, reactivity, and application.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarkov, A.S., Kozhikhov, A.A., Nefedova, A.A. et al. New Method for the Preparation of 2,3-Disubstituted 2,3-Dihydrothiazolo[3,2-a]pyrimidines. Dokl Chem 505, 177–183 (2022). https://doi.org/10.1134/S0012500822700070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500822700070

Keywords:

Navigation