Skip to main content
Log in

Acceleration and particle transport in collisionless plasma in the process of dipolarization and nonstationary turbulence

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This work is devoted to studying the processes of the acceleration of plasma particles in thin current sheets that appear during magnetospheric substorms in the Earth’s magnetosphere tail. A numerical model of magnetic dipolarization accompanied by plasma turbulence has been constructed and studied. The model allows one to investigate the particle acceleration due to the action of three principal mechanisms: (1) plasma turbulence; (2) magnetic dipolarization; (3) their simultaneous action. For the given velocity kappa-distributions, we obtained energy spectra of three types of accelerated particles, i.e., protons p+, ions of oxygen O+, and electrons e. It has been shown that the combined mechanism of dipolarization with turbulence (3) makes the largest contribution to the increase in the energy of protons and heavy ions as compared with a separate action of each of mechanisms (1) and (2); in this case, electrons accelerate less. The consideration of the joint action of acceleration mechanisms (1) and (2) can explain the apparition of particles with energies on the order of magnitude equal to hundreds keV in the Earth’s magnetosphere tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apatenkov, S.V., Sergeev, V.A., Kubyshkina, M.V., et al., Multispacecraft observation of plasma depolarization injection in the inner magnetosphere, Ann. Geophys., 2007, vol. 25, pp. 801–814.

    Article  ADS  Google Scholar 

  2. Artemyev, A.V., Zelenyi, L.M., Malova, Kh.V., et al., Acceleration and transport of ions in turbulent current sheets: Formation of non-Maxwellian energy distribution, Nonlinear Processes Geophys., 2009, vol. 16, pp. 631–639.

    Article  ADS  Google Scholar 

  3. Delcourt, D.C. and Belmont, G., Ion dynamics at the earthward termination of the magnetotail current sheet, J. Geophys. Res., 1998, vol. 103, pp. 4605–4613.

    Article  ADS  Google Scholar 

  4. Grigorenko, E.E., Hoshino, M., Hirai, M., et al., “Geography” of ion acceleration in the magnetotail: X line versus current sheet effects, J. Geophys. Res., 2009, vol. 114, A03203. doi 10.1029/2008JA013811

    Article  ADS  Google Scholar 

  5. Harris, E.G., On a plasma sheet separating regions of oppositely directed magnetic field, Nuovo Cimento, 1962, vol. 23, pp. 115–123.

    Article  MATH  Google Scholar 

  6. Hoshino, M., Nishida, A., Yamamoto, T., et al., Turbulent magnetic field in the distant magnetotail: Bottom–up process of plasmoid formation, Geophys. Res. Lett., 1994, vol. 21, pp. 2935–2938.

    Article  ADS  Google Scholar 

  7. Zelenyi, L.M., Artemyev, A.V., Petrukovich, A.A., et al., Low frequency eigenmodes of thin anisotropic current sheets and cluster observations, Ann. Geophys., 2009, vol. 27, no. 2, pp. 861–868.

    Article  ADS  Google Scholar 

  8. Zimbardo, G., Greco, A., Veltri, P., et al., Double peak structure and diamagnetic wings of the magnetotail current sheet, Ann. Geophys., 2004, vol. 22, no. 7, pp. 2541–2546.

    Article  ADS  Google Scholar 

  9. Catapano, F., Zimbardo, G., Perri, S., Greco, A., and Artemyev, A., Proton and heavy ion acceleration by stochastic fluctuations in the Earth’s magnetotail, Ann. Geophys., 2016, vol. 34, no. 10, pp. 917–926.

    Article  ADS  Google Scholar 

  10. Sergeev, V.A., Mitchell, D.G., Russell, C.T., et al., Structure of the tail plasma/current sheet at ~11RE and its changes in the course of a substorm, J. Geophys. Res., 1993, vol. 98, no. A10, pp. 17345–17365.

    Article  ADS  Google Scholar 

  11. Mitchell, D.G., Williams, G.J., Huang, C.Y., et al., Current carriers in the near-Earth cross-tail current sheet during substorm growth phase, J. Geophys. Res., 1990, vol. 17, pp. 583–586.

    Google Scholar 

  12. Pulkkinen, T.I., Baker, D.N., Mitchell, D.G., et al., Thin current sheets in the magnetotail during substorms: CDAW 6 revisited, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5793–5803.

    Article  ADS  Google Scholar 

  13. Speiser, T.W., Particle trajectories in model current sheets: 1. Analytical solutions, J. Geophys. Res., 1965, vol. 70, no. 17, pp. 4219–4226.

    Article  ADS  Google Scholar 

  14. Runov, A., Nakamura, R., Baumjohann, W., et al., Current sheet structure near magnetic X-line observed by Cluster, Geophys. Res. Lett., 2003, vol. 30, no. 11, 1579.

    Article  ADS  Google Scholar 

  15. Sergeev, V., Runov, A., Baumjohann, W., et al., Current sheet flapping motion and structure observed by cluster, Geophys. Res. Lett., 2003, vol. 30, no. 6, 1327.

    Article  ADS  Google Scholar 

  16. Kropotkin, A.P., Malova, H.V., and Sitnov, M.I., Selfconsistent structure of a thin anisotropic current sheet, J. Geophys. Res., 1997, vol. 102, no. A10, pp. 22099–22106.

    Article  ADS  Google Scholar 

  17. Mingalev, O.V., Mingalev, I.V., Malova, Kh.V., et al., Asymmetric configurations of a thin current sheet with a constant normal magnetic field component, Plasma Phys. Rep., 2009, vol. 35, no. 1, pp. 76–83.

    Article  ADS  Google Scholar 

  18. Zelenyi, L.M., Artemyev, A.V., Malova, Kh.V., et al., Marginal stability of thin current sheets in the Earth’s magnetotail, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, nos. 2–4, pp. 325–333.

    Article  ADS  Google Scholar 

  19. Zelenyi, L.M., Artemyev, A.V., Malova, Kh.V., et al., Metastability of current sheets, Phys.-Usp., 2010, vol. 53, no. 9, pp. 933–940.

    Article  ADS  Google Scholar 

  20. Zelenyi, L.M., Malova, Kh.V., Artemyev, A.V., et al., Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities and particle acceleration, Plasma Phys. Rep., 2011, vol. 37, no. 2, pp. 118–160.

    Article  ADS  Google Scholar 

  21. Sergeev, V.A., Pulkkinen, T.I., and Pellinen, R.J., Coupled mode scenario for the magnetospheric dynamics, J. Geophys. Res., 1996, vol. 101, no. A6, pp. 13047–13065

    Article  ADS  Google Scholar 

  22. Sergeev, V.A., Angelopoulos, V., and Nakamura, R., Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 2012, vol. 39, no. 5, L05101.

    Article  ADS  Google Scholar 

  23. Speiser, T.W., Particle trajectories in model current sheets: 1. Analytical solutions, J. Geophys. Res., 1965, vol. 70, no. 17, pp. 4219–4226.

    Article  ADS  Google Scholar 

  24. Lyons, L.R. and Speiser, T.W., Evidence for current sheet acceleration in the geomagnetic tail, J. Geophys. Res., 1982, vol. 87, no. A4, pp. 2276–2286.

    Article  ADS  Google Scholar 

  25. Speiser, T.W., Particle trajectories in model current sheets: 2. Applications to auroras using a geomagnetic tail model, J. Geophys. Res., 1967, vol. 72, no. 15, pp. 3919–3932.

    Article  ADS  Google Scholar 

  26. Veltri, P., Zimbardo, G., Taktakishvili, A.L., et al., Effect of magnetic turbulence on the ion dynamics in the distant magnetotail, J. Geophys. Res., 1998, vol. 103, no. A7, pp. 14897–14910.

    Article  ADS  Google Scholar 

  27. Greco, A., Taktakishvili, A.L., Zimbardo, G., et al., Ion dynamics in the near-Earth magnetotail: Magnetic turbulence versus normal component of the average magnetic field, J. Geophys. Res., 2002, vol. 107, no. A10, 1267.

    Article  Google Scholar 

  28. Drake, J.F., Swisdak, M., Che, H., and Shay, M.A., Electron acceleration from contracting magnetic islands during reconnection, Nature, 2006, vol. 443, pp. 553–556.

    Article  ADS  Google Scholar 

  29. Kobak, T. and Ostrowski, M., Energetic particle acceleration in a three-dimensional magnetic field reconnection model: The role of magnetohydrodynamic turbulence, Mon. Not. R. Astron. Soc., 2000, vol. 317, no. 4, pp. 973–978.

    Article  ADS  Google Scholar 

  30. Dmitruk, P., Matthaeus, W.H., and Seenu, N., Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence, Astrophys. J., 2004, vol. 617, no. 1, pp. 667–679.

    Article  ADS  Google Scholar 

  31. Pommois, P., Zimbardo, G., and Veltri, P., Energetic particle transport in anisotropic magnetic turbulence, Adv. Space Res., 2005, vol. 35, no. 4, pp. 647–652.

    Article  ADS  MATH  Google Scholar 

  32. Zelenyi, L.M., Artemyev, A.V., Malova, H.V., et al., Particle transport and acceleration in a time-varying electromagnetic field with a multi-scale structure, Phys. Lett. A, 2008, vol. 372, no. 41, pp. 6284–6287.

    Article  ADS  MATH  Google Scholar 

  33. Artemyev, A.V., Zelenyi, L.M., Malova, Kh.V., et al., Acceleration and transport of ions in turbulent current sheets: Formation of non-Maxwellian energy distribution, Nonlinear Processes Geophys., 2009, vol. 16, p. 631–639.

    Article  ADS  Google Scholar 

  34. Carbone, V., Lepreti, F., and Veltri, P., Confining turbulence in plasmas, Phys. Plasmas, 2004, vol. 11, no. 1, pp. 103–109.

    Article  ADS  Google Scholar 

  35. Delcourt, D.C. and Sauvaud, J.A., Plasma sheet ion energization during dipolarization events, J. Geophys. Res., 1994, vol. 99, no. A1, pp. 97–108.

    Article  ADS  Google Scholar 

  36. Delcourt, D.C., Particle acceleration by inductive electric fields in the inner magnetosphere, J. Atmos. Sol.- Terr. Phys., 2002, vol. 64, nos. 5–6, pp. 551–559.

    Article  ADS  Google Scholar 

  37. Ono, Y., Nosé, M., Christon, S.P., and Lui, A.T.Y., The role of magnetic field fluctuations in nonadiabatic acceleration of ions during depolarization, J. Geophys. Res., 2009, vol. 114, A05209.

    Article  ADS  Google Scholar 

  38. San, L., Artemyev, A.V., Angelopoulos, V., et al., On the current density reduction ahead of dipolarization fronts, J. Geophys. Res., 2016, vol. 121, pp. 4269–4278.

    Article  Google Scholar 

  39. Artemyev, A.V., Kasahara, S., Ukhorskiy, A.Y., et al., Acceleration of ions in the jupiter magnetotail: particle resonant interaction with dipolarization fronts, Planet. Space Sci., 2013, vols. 82–83, pp. 134–148.

    Article  Google Scholar 

  40. Hoshino, M., Electron surfing acceleration in magnetic reconnection, J. Geophys. Res., 2005, vol. 110, A10215.

    Article  ADS  Google Scholar 

  41. Malova, Kh.V., Zelenyi, L.M., Mingalev, O.V., et al., Current sheet in a non-Maxwellian collisionless plasma: Self-consistent theory, simulation, and comparison with spacecraft observations, Plasma Phys. Rep., 2010, vol. 36, no. 10, pp. 841–858.

    Article  ADS  Google Scholar 

  42. Sergeev, V.A., Mitchell, D.G., Russell, C.T., and Williams, D.J., Structure of the tail plasma, current sheet at 11 RE and its changes in the course of a substorm, J. Geophys. Res., 1993, vol. 98, no. A10, pp. 17345–17365.

    Article  ADS  Google Scholar 

  43. Runov, A., Sergeev, V.A., Nakamura, R., et al., Local structure of the magnetotail current sheet: 2001 Cluster observations, Ann. Geophys., 2006, vol. 24, pp. 247–262.

    Article  ADS  Google Scholar 

  44. Nakamura, R., Baumjohann, W., Runov, A., et al., Thin current sheets in the magnetotail observed by cluster, Space Sci. Rev., 2006, vol. 122, nos. 1–4, pp. 29–38.

    Article  ADS  Google Scholar 

  45. Wygant, J.R., Cattell, C.A., Lysak, R., et al., Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region, J. Geophys. Res., 2005, vol. 110, A09206.

    Article  ADS  Google Scholar 

  46. Zelenyi, L.M., Malova, H.V., Popov, V.Yu., et al., Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy, Nonlinear Processes Geophys., 2006, vol. 11, pp. 579–587.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Zhukova.

Additional information

Original Russian Text © E.I. Zhukova, Kh.V. Malova, V.Yu. Popov, E.E. Grigorenko, A.A. Petrukovich, L.M. Zelenyi, 2017, published in Kosmicheskie Issledovaniya, 2017, Vol. 55, No. 6, pp. 429–437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, E.I., Malova, K.V., Popov, V.Y. et al. Acceleration and particle transport in collisionless plasma in the process of dipolarization and nonstationary turbulence. Cosmic Res 55, 417–425 (2017). https://doi.org/10.1134/S0010952517060119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952517060119

Navigation