Skip to main content
Log in

Smoothed particle hydrodynamics simulation of the submarine structure subjected to a contact underwater explosion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

In this paper, a modified smoothed particle hydrodynamics (SPH) formula is deduced to solve the problem of interfaces with a high density ratio. Simplified SPH models for single and double cylindrical shells (abbreviated as single-hull and double-hull models, respectively) are established to study shock wave propagation and to conduct the damage analysis. The SPH results for the single-hull model are verified by AUTODYN. In addition, the damage analysis indicates that the single-hull model is damaged more severely than the double-hull model. The inner shell in the double-hull model is protected by a water interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Zhang, L. Y. Zeng, X. D. Cheng, et al., “The Evaluation Method of Total Damage to Ship in Underwater Explosion,” Appl. Ocean Res. 33 (4), 240–251 (2011).

    Article  Google Scholar 

  2. V. S. Deshpande and N. A. Fleck, “One-Dimensional Response of Sandwich Plates to Underwater Shock Loading,” J. Mech. Phys. Solids 53 (11), 2347–2383 (2005).

    Article  MATH  ADS  Google Scholar 

  3. Y. Wang, W. Zhang, H. X. Hua, et al., “Dynamic Response of a Submarine Foam Sandwich Structure Subjected to under Water Explosion.” J. Vibr. Shock 29 (4), 64–68 (2010) [in Chinese].

    Google Scholar 

  4. A. M. Zhang, W. X. Zhou, S. P. Wang, et al., “Dynamic Response of the Non-Contact Underwater Explosion on Naval Equipment,” Marine Struct. 24 (4), 396–411 (2011).

    Article  Google Scholar 

  5. U. M. Hans, “Review: Hydrocodes for Structure Response to Underwater Explosion,” Shock Vibr. 6 (2), 81–96 (1999).

    Article  Google Scholar 

  6. J. W. Swegle and S. W. Attaway, “On the Feasibility of Using Smoothed Particle Hydrodynamics for Underwater Explosion Calculations,” Comput. Mech. 17 (3), 151–168 (1995).

    Article  MATH  Google Scholar 

  7. A. M. Zhang, S. P. Wang, C. Huang, et al., “Influences of Initial and Boundary Conditions on Underwater Explosion Bubble Dynamics,” Eur. J. Mech., B: Fluid 42, 69–91 (2013).

    Article  ADS  Google Scholar 

  8. A. H. Keil, Introduction to Underwater Explosion Research (UERD, Norfolk Naval Ship Yard, Portsmouth, 1956).

    Google Scholar 

  9. A. H. Keil, “The Response of Ships to Underwater Explosions,” Trans. Soc. Naval Arch. Marine Eng. 69, 366–410 (1961).

    Google Scholar 

  10. R. Rajendran and K. Narasimhan, “Damage Prediction of Clamped Circular Plates Subjected to Contact Underwater Explosion,” Int. J. Impact Eng. 25 (4), 373–386 (2001).

    Article  Google Scholar 

  11. G. N. Nurick and A. M. Radford, “Deformation and Tearing of Clamped Circular Plates Subjected to Localized Central Blast Loads,” in Recent Developments in Computational and Applied Mechanics: A Volume in Honour of John B. Martin (International Centre for Numerical Methods in Engineering (CIMNE) (Barcelona, Spain, 1997).

    Google Scholar 

  12. R. Q. Liu, X. F. Bai, and X. Zhu, “Breach Experiment Research of Vessel Element Structure Models Subjected to Underwater Contact Explosion,” J. Naval Univ. Eng. 13 (5), 41–46 (2001) [in Chinese].

    Google Scholar 

  13. Y. W. Lee and T. Wierzbicki, “Fracture Prediction of Thin Plates under Localized Impulsive Loading. Part I: Dishing,” Int. J. Impact Eng. 31 (10), 1253–1276 (2005).

    Article  Google Scholar 

  14. Y. W. Lee and T. Wierzbicki, “Fracture Prediction of Thin Plates under Localized Impulsive Loading. Part II: Discing and Petaling,” Int. J. Impact Eng. 31 (10), 1277–1308 (2005).

    Article  Google Scholar 

  15. J. H. Kim and H. C. Shin, “Application of the ALE Technique for Underwater Explosion Analysis of a Submarine Liquefied Oxygen Tank,” Ocean Eng. 35 (8/9), 812–822 (2008).

    Article  Google Scholar 

  16. M. B. Liu, G. R. Liu, Z. Zong, and K. Y. Lam, “Computer Simulation of High Explosive Explosion using Smoothed Particle Hydrodynamics Methodology,” Comput. Fluids 32 (3), 305–322 (2003).

    Article  MATH  Google Scholar 

  17. A. M. Zhang, W. S. Yang, and X. L. Yao, “Numerical Simulation of Underwater Contact Explosion,” Appl. Ocean Res. 34, 10–20 (2012).

    Article  ADS  Google Scholar 

  18. A. M. Zhang, W. S. Yang, C. Huang, and F. R. Ming, “Numerical Simulation of Column Charge Underwater Explosion Based on SPH and BEM Combination,” Comput. Fluids 1, 169–178 (2013).

    Article  MathSciNet  Google Scholar 

  19. A. M. Zhang, F. R. Ming, and S. P. Wang, “Coupled SPHS-BEM Method for Transient Fluid-Structure Interaction and Applications in Underwater Impacts,” Appl. Ocean Res. 43, 223–233 (2013).

    Article  MATH  Google Scholar 

  20. F. R. Ming, A. M. Zhang, W. S. Yang, et al., “SPH Algorithm to Deal with the Problem of Underwater Contact Explosion of Warship,” J. Vibr. Shock 31 (10), 147–151 (2011) [in Chinese].

    Google Scholar 

  21. G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics—A Meshfree Particle Method (World Sci., Singapore, 2003).

    Book  MATH  Google Scholar 

  22. B. M. Dobratz, LLNL Explosives Handbook: Properties of Chemical Explosives and Explosives and Explosive Simulants (Lawrence Livermore Nat. Lab., Livermore, 1981); http://www.osti.gov/scitech/biblio/6530310.

    Google Scholar 

  23. D. J. Steinberg, Spherical Explosions and the Equation of State of Water (Lawrence Livermore Nat. Lab., Livermore, 1987); http://www.osti.gov/scitech/biblio/6766676.

    Book  Google Scholar 

  24. L. D. Libersky, A. G. Petscheck, T. C. Carney, et al., “High Strain Lagrangian Hydrodynamics a Three- Dimensional SPH Code for Dynamic Material Response,” J. Comput. Phys. 109 (1), 67–75 (1993).

    Article  MATH  ADS  Google Scholar 

  25. G. R. Johnson and W. H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures,” in Proc. 7th Int. Symp. on Ballistics, USA, 1983.

    Google Scholar 

  26. R. V. Mises, “Mechanik der Festen Körper im Plastisch Deformablen Zustand,” in Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (Math.- Phys. Klasse, 1913), pp. 582–592.

    Google Scholar 

  27. S. Z. Zhang, Explosion and Shock Dynamics (Weapon Industry Press, Beijing, China, 1993) [in Chinese].

    Google Scholar 

  28. B. V. Zamyshlyayev, Dynamic Loads in Underwater Explosion (Naval Intelligince Support Center, Washington, 1973). AD-757183.

    Google Scholar 

  29. G. T. Yang, Introduction to Elasticity and Plasticity (Tsinghua Univ. Press, Beijing, China, 2004) [in Chinese].

    Google Scholar 

  30. J. B. Gai, S. Wang, and P. Tang, “Damage of Thin Plate Subjected to Contact Explosion Loading,” J. Harbin Eng. Univ. 27 (4), 523–525 (2006) [in Chinese].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Additional information

Original Russian Text © Z. Zhang, L. Sun, X. Yao, X. Cao.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 116–125, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sun, L., Yao, X. et al. Smoothed particle hydrodynamics simulation of the submarine structure subjected to a contact underwater explosion. Combust Explos Shock Waves 51, 502–510 (2015). https://doi.org/10.1134/S0010508215040164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040164

Keywords

Navigation