Skip to main content
Log in

Measurement of electrical conductivity of condensed substances in shock waves (Review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Available experimental techniques of electrical conductivity measurements under strong shock compression are analyzed. Dielectric-semiconductor, dielectric (semiconductor)-metal, and metal-metal (semiconductor) transitions are considered. Methods and schemes of contact and contactless measurements in inert and electrically active media, implemented by various authors, are discussed. In-depth analysis of measurement circuits, two-dimensional and three-dimensional modeling of currents, fields, and hydrodynamic flows, passing from the electric engineering model to the field electromagnetic model, and allowance for transitional electrodynamic processes have contributed to the significant recent improvement of the time resolution and to extending the range of conductivity registration under shock compression. A typical feature of new techniques is solving a differential equation for the electrical circuit or finding electrical conductivity by solving an inverse boundary-value problem for the magnetic diffusion equation. In particular, the problem of electrical conductivity registration on dielectric (semiconductor) — metal transitions, which has been known since the 1950s, is solved in this manner. Difficulties, constraints, and unsolved problems of experimental techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman, “Electrical conductivity of explosion products of condensed explosives,” Zh. Éksp. Teor. Fiz., 37, No. 6(12), 1543–1549 (1959).

    Google Scholar 

  2. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman, “Electrical conductivity of dielectrics in strong shock waves,” Zh. Éksp. Teor. Fiz., 38, No. 1, 22–25 (1960).

    Google Scholar 

  3. D. L. Styris and G. E. Duvall, “Electrical conductivity of materials under shock compression,” High Temp.-High Pressures, 2, No. 5, 477–499 (1970).

    Google Scholar 

  4. R. N. Keeler, “Electrical conductivity of condensed media at high pressures,” in: P. Caldirola and H. Knoepfel (eds.), Physics of High Energy Density, Academic Press, New York (1971), pp. 106–125.

    Google Scholar 

  5. V. N. Mineev and A. G. Ivanov, “Electromotive force arising during shock compression of matter,” Usp. Fiz. Nauk, 119, No. 1, 75–109 (1976).

    Article  Google Scholar 

  6. V. V. Yakushev, “Electrical measurements in a dynamic experiment,” Combust., Expl., Shock Waves, 14, No. 2, 131–145 (1978).

    Article  Google Scholar 

  7. L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep., 55, No. 4, 255–379 (1979).

    Article  ADS  Google Scholar 

  8. R. A. Graham, Solids Under High-Pressure Shock Compression, Springer-Verlag, New York (1993).

    Book  Google Scholar 

  9. M. V. Zhernokletov (ed.), Methods of Studying Material Properties Under Intense Dynamic Loads [in Russian], Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov (2003).

    Google Scholar 

  10. V. A. Borisenok, A. M. Molodets, and E. Z. Novitskii (eds.), Electrical Phenomena in Shock Waves [in Russian], Inst. Exper. Phys., Russian Federal Nuclear Center, Sarov (2005).

    Google Scholar 

  11. L. V. Al’tshuler, D. V. Kuleshova, and M. N. Pavlovskii, “Dynamic compressibility, equation of state, and conductivity of sodium chloride at high pressures,” Zh. Éksp. Teor. Fiz., 39, No. 1, 16–23 (1960).

    Google Scholar 

  12. A. C. Mitchell and R. N. Keeler, “Technique for accurate measurement of the electrical conductivity of shocked fluids,” Rev. Sci. Instrum., 39, No. 4, 513–522 (1968).

    Article  ADS  Google Scholar 

  13. V. V. Yakushev, S. S. Nabatov, and O. B. Yakusheva, “Physical properties and conversion of acrylonitrile at high dynamic pressures,” Combust., Expl., Shock Waves, 10, No. 4, 509–518 (1974).

    Article  Google Scholar 

  14. S. A. Bordzilovskii and S. M. Karakhanov, “Electric resistance of polytetrafluoroethylene under shock compression,” Combust., Expl., Shock Waves, 38, No. 6, 722–727 (2002).

    Article  Google Scholar 

  15. S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Electrical resistivity of single-crystal Al2O3 shock-compressed in the pressure range 91–220 GPa (0.91–2.20 Mbar),” J. Appl. Phys., 80, No. 3, 1522–1525 (1996).

    Article  ADS  Google Scholar 

  16. N. K. Bourne, D. Townsend, and M. Braithwaite, “On conductivity changes in shocked potassium chloride,” J. Appl. Phys., 97, 123506 (2005).

    Article  ADS  Google Scholar 

  17. V. A. Borisenok, V. A. Kruchinin, V. A. Bragunets, et al., “Measuring shock-induced electrical conductivity in piezoelectrics and ferroelectrics. Single-crystal quartz,” Combust., Expl., Shock Waves, 43, No. 1, 96–103 (2007).

    Article  Google Scholar 

  18. V. A. Bragunets, V. G. Simakov, V. A. Borisenok, et al., “Shock-induced electrical conductivity in some ferroelectrics,” Combust., Expl., Shock Waves, 46, No. 2, 231–236 (2010).

    Article  Google Scholar 

  19. L. V. Kuleshova, “Electrical conductivity of boron nitride, potassium chloride, and fluoroplastic-4 behind the shock wave front,” Fiz. Tverd. Tela, 11, No. 5, 1085–1091 (1969).

    Google Scholar 

  20. L. V. Kuleshova and M. N. Pavlovskii, “Dynamic compressibility, electrical conductivity, and sound velocity behind a shock front in Kaprolon,” J. Appl. Mech. Tech. Phys., 18, No. 5, 689–692 (1977).

    Article  ADS  Google Scholar 

  21. S. S. Nabatov, A. N. Dremin, V. I. Postnov, and V. V. Yakushev, “Measurement of electrical conductivity of sulfur under dynamic compression to 400 kbar,” Pis’ma Zh. Tekh. Fiz., 5, No. 3, 143–145 (1979).

    Google Scholar 

  22. S. S. Nabatov, A. N. Dremin, V. I. Postnov, and V. V. Yakushev, “Measurement of electrical conductivity of sulfur under superhigh dynamic pressures,” Pis’ma Zh. Éksp. Teor. Fiz., 29, No. 7, 407–410 (1979).

    Google Scholar 

  23. S. S. Nabatov, A. N. Dremin, V. I. Postnov, and V. V. Yakushev, “Measurement of electrical conductivity of a condensed substance under multiple shock-wave compression to 1 megabar,” in: Chemical Physics of Combustion and Explosion Processes [in Russian], Chernogolovka (1980), pp. 117–119.

  24. V. I. Postnov, L. A. Anan’eva, A. N. Dremin, et al., “Electrical conductivity and compressibility of sulfur under shock loading,” Combust., Expl., Shock Waves, 22, No. 4, 486–488 (1986).

    Article  Google Scholar 

  25. S. T. Weir, A. C. Mitchell, and W. J. Nellis, “Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. Lett., 76, No. 11, 1860–1863 (1996).

    Article  ADS  Google Scholar 

  26. W. J. Nellis, S. T. Weir, and A. C. Mitchell, “Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar),” Phys. Rev. B, 59, No. 5, 3434–3449 (1999).

    Article  ADS  Google Scholar 

  27. V. E. Fortov, V. Ya. Ternovoi, M. V. Zhernokletov, et al., “Pressure-induced ionization of a nonideal plasma in the megabar range of dynamic pressures,” Zh. Éksp. Teor. Fiz., 124, No. 2, 288–309 (2003).

    Google Scholar 

  28. S. D. Gilev and T. Yu. Mikhailova, “Current wave in shock compression of a substance in a magnetic field,” Zh. Tekh. Fiz., 66, No. 5, 1–9 (1996).

    Google Scholar 

  29. L. A. Gatilov and L. V. Kuleshova, “Measurement of high electrical conductivity in shock-compressed dielectrics,” J. Appl. Mech. Tech. Phys., 22, No. 1, 114–117 (1981).

    Article  ADS  Google Scholar 

  30. L. A. Gatilov and L. V. Kuleshova, “Electrical conductivity of cesium iodide behind the shock-wave front at pressures up to 100 GPa,” Fiz. Tverd. Tela, 23, No. 9, 2848–2851 (1981).

    Google Scholar 

  31. L. A. Gatilov, V. D. Glukhodedov, F. V. Grigor’ev, et al., “Electrical conductivity of shock-compressed condensed argon at pressures from 20 to 70 GPa,” J. Appl. Mech. Tech. Phys., 26, No. 1, 87–91 (1985).

    Article  ADS  Google Scholar 

  32. V. D. Urlin, M. A. Mochalov, and O. L. Mikhailova, “Liquid xenon study under shock and quasi-isentropic compression,” High Pressure Res., 8, 595–605 (1992).

    Article  ADS  Google Scholar 

  33. M. A. Mochalov, V. D. Glukhoedov, S. I. Kirshanov, and T. S. Levedeva, “Electric conductivity of liquid argon, krypton and xenon under shock compression up to pressure of 90 GPa,” in: M. D. Furnish, L. C. Chhabildas, and R. S. Hixon (eds.), Shock Compression of Condensed Matter-1999, AIP Press (2000), pp. 983–986.

  34. S. D. Gilev and A. M. Trubachev, “Measurement of high electrical conductivity in silicon in shock waves,” J. Appl. Mech. Tech. Phys., 29, No. 6, 818–823 (1988).

    Article  ADS  Google Scholar 

  35. E. I. Bichenkov, S. D. Gilev, and A. M. Trubachev, “Shock-induced conduction waves in electrophysical experiments,” J. Appl. Mech. Tech. Phys., 30, No. 2, 291–302 (1989).

    Article  ADS  Google Scholar 

  36. S. D. Gilev and T. Yu. Mihailova, “The development of a method of measuring a condensed matter electroconductivity for investigation of dielectric-metal transitions in a shock wave,” J. Phys. IV, 5 (1997); in: Colloque C3 Suppl. J. Phys. III, No. 7; in: 5th Int. Conf. on Mechanical and Physical Behaviour of Materials under Dynamic Loading (EURODYMAT 97), Toledo, Spain, September 22–26 (1997), pp. C3-211–216.

  37. S. D. Gilev and A. M. Trubachev, “Metallization of silicon in a shock wave: metallization threshold and ultrahigh defect densities,” J. Phys., Cond. Mat., 16, No. 46, 8139–8153 (2004).

    Article  ADS  Google Scholar 

  38. S. D. Gilev, “Electrical conductivity of metal powders under shock compression,” Combust., Expl., Shock Waves, 41, No. 5, 599–609 (2005).

    Article  Google Scholar 

  39. S. D. Gilev, “Selenium metallization under shock compression,” Zh. Tekh. Fiz., 76, No. 7, 41–47 (2006).

    Google Scholar 

  40. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic processes in a system of conductors formed by a shock wave,” Zh. Tekh. Fiz., 66, No. 10, 109–117 (1996).

    Google Scholar 

  41. S. D. Gilev, “Application of the electromagnetic model for diagnosing shock-wave processes in metals,” Combust. Expl. Shock Waves, 37, No. 2, 230–235 (2001).

    Article  Google Scholar 

  42. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field,” Combust., Expl., Shock Waves, 36, No. 6, 816–825 (2000).

    Article  Google Scholar 

  43. J. E. Wong, R. K. Linde, and P. S. De Carli, “Dynamic electrical resistivity of iron: Evidence for a new high pressure phase,” Nature, 219, 713 (1968).

    Article  ADS  Google Scholar 

  44. R. N. Keeler and A. C. Mitchell, “Electrical conductivity, demagnetization and the high-pressure phase transition in shock-compressed iron,” Solid State Communication, 7, 271–274 (1969).

    Article  ADS  Google Scholar 

  45. J. J. Dick and D. L. Styris, “Electrical resistivity of silver foils under uniaxial shock-wave compression,” J. Appl. Phys., 46, No. 4, 1602–1617 (1975).

    Article  ADS  Google Scholar 

  46. M. N. Pavlovskii, “Electrical resistance of shockcompressed ytterbium,” Zh. Éksp. Teor. Fiz., 73, No. 1, 237–245 (1977).

    Google Scholar 

  47. Yu. N. Zhugin, K. K. Krupnikov, and N. A. Ovechkin, “Specific features of conversion of shock-compressed graphite to diamond, based on changes in electrical resistance,” Khim. Fiz., 6, No. 10, 1447–1450 (1987).

    Google Scholar 

  48. V. I. Postnov, S. S. Nabatov, A. A. Shcherban, and V. V. Yakushev, “Registration of phase transitions during isentropic compression by the method of measuring electrical resistance of thin samples,” Zh. Tekh. Fiz., 57, No. 6, 1181–1183 (1987).

    Google Scholar 

  49. Yu. N. Zhugin, K. K. Krupnikov, and V. I. Tarzhanov, “Studying the kinetics of conversion of natural Singhalese graphite in shock waves,” Khim. Fiz., 18, No. 5, 96–101 (1999).

    Google Scholar 

  50. Yan Bi, Hua Tan, and Fuqian Jing, “Electrical conductivity of iron under shock compression up to 200 GPa,” J. Phys., Condens. Matter., 14, 10849–10854 (2002).

    Article  ADS  Google Scholar 

  51. V. E. Fortov, V. V. Yakushev, K. I. Kagan, et al., “Lithium at dynamic pressure,” J. Phys: Condens. Matter, 14, 10809–10816 (2002).

    Article  ADS  Google Scholar 

  52. A. M. Molodets, D. V. Shakhray, A. A. Golyshev, and V. E. Fortov, “Electrophysical and thermodynamic properties of shock compressed incommensurate phase Sc-II,” Phys. Rev. B, 75, 224111 (2007).

    Article  ADS  Google Scholar 

  53. S. D. Gilev, “Electrical properties of a high-porosity nickel sponge in a shock wave,” Zh. Tekh. Fiz., 65, No. 6, 84–93 (1995).

    Google Scholar 

  54. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic field formed by shock compression of a conducting magnetic,” Combust., Expl., Shock Waves, 39, No. 6, 704–714 (2003).

    Article  Google Scholar 

  55. L. A. Gatilov, V. N. Zubarev, and A. N. Shuikin, “Measurement of electrical resistance of metals under dynamic compression,” in: Proc. I All-Union Sympos. on Pulsed Pressures, Moscow, October 24–26, 1973, VNIIFTRI, Moscow (1974), Vol. 1, pp. 50–53.

    Google Scholar 

  56. L. A. Gatilov, “Electrical resistance of shockcompressed lead,” in: Physics of Pulsed Pressures (collected scientific papers) [in Russian], No. 44 (77) (1979), p. 104.

  57. Yu. N. Zhugin and Yu. L. Levakova, “Effect of the conductance and thickness of a conducting plate on the signal from a material-velocity inductive transducer,” J. Appl. Mech. Tech. Phys., 41, No. 6, 1136–1148 (2000).

    Article  Google Scholar 

  58. M. A. Gulevich, V. V. Pai, and I. V. Yakovlev, “Method for determining the eletrical conductivity of nonmagnetic metals under dynamic loading,” Combust., Expl., Shock Waves, 46, No. 2, 225–230 (2010).

    Article  Google Scholar 

  59. T. Sakakibara, T. Goto, and N. Miura, “Contactless transport measurements of metals in pulsed high magnetic fields,” Rev. Sci. Instrum., 60, No. 3, 444–449 (1989).

    Article  ADS  Google Scholar 

  60. B. E. Kane, A. S. Dzurak, G. R. Faser, et. al., “Measurement instrumentation for electrical transport experiments in extreme pulsed magnetic fields generated by flux compression,” Rev. Sci. Instrum., 68, No. 10, 3843–3860 (1997).

    Article  ADS  Google Scholar 

  61. Yu. B. Kudasov and A. V. Filippov, “Measurement of high-frequency complex impedance in fast processes,” Prib. Tekh. Éksper., No. 6, 95–99 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 4, pp. 3–23, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilev, S.D. Measurement of electrical conductivity of condensed substances in shock waves (Review). Combust Explos Shock Waves 47, 375–393 (2011). https://doi.org/10.1134/S0010508211040010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211040010

Keywords

Navigation