Skip to main content
Log in

The information theory of aging: The major factors that determine lifespan

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The information theory of aging assumes that decreased functionality of the whole organism and its systems is a result of decreased functionality of cellular repair mechanisms caused by the accumulation of genomic damages in the cells. A four-level cause-effect model of the interaction between the key processes during aging of highly organized multicellular organisms is proposed. Based on this model, some mathematical laws of changes in the viability of an organism are examined. The main fundamental factors that influence individual life expectancy, such as the initial amount of genomic damages at birth, the rate of its accumulation, and the pressure of the environment, are described. Additive and multiplicative interactions of the processes in different complex systems of a multicellular organism and their effects on its overall functionality (viability) are analyzed and the quantitative patterns of aging in a population of model organism are studied. The simulation provided the survival curves for species with different types of aging and a description of a compensation effect for species with aging that follows the Gompertz–Makeham law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Medawar, An Unsolved Problem of Biology (University College, London, UK, 1952).

    Google Scholar 

  2. R. Elliott, Ohio J. Sci. 55,193 (1955).

    Google Scholar 

  3. J. Bjorksten, J. Am. Geriatr. Soc. 16, 408 (1968).

    Article  Google Scholar 

  4. R. L. Walford, Immunol. Rev. 2, 171, (1969).

    Google Scholar 

  5. B. Strehler, G. Hirsch, D. Gusseck, et al., J. Theor. Biol. 33, 429 (1971).

    Article  Google Scholar 

  6. V. M. Monnier, Progr. Clin. Biol. Res. 304, 1 (1988).

    Google Scholar 

  7. J. Miquel, Arch. Gerontol. Geriatr. 12, 99 (1991).

    Article  Google Scholar 

  8. D. Harman, Mutat. Research/DNAging 275, 257 (1992).

    Article  Google Scholar 

  9. V. M. Dilman, Four Models of Medicine (Meditsina, Moscow, 1987) [in Russian].

    Google Scholar 

  10. K. B. Beckman and B. N. Ames, Physiol. Rev. 78, 547 (1998).

    Article  Google Scholar 

  11. U. T. Brunk and A. Terman, Eur. J. Biochem. 269, 1996 (2002).

    Article  Google Scholar 

  12. A. G. Ryazanov and B. S. Nefsky, Mech. Ageing Dev. 123, 207 (2002).

    Article  Google Scholar 

  13. L. A. Gavrilov and N. S. Gavrilova, in Modulating Aging and Longevity, Ed. by S. I. S. Rattan (Kluver, Dordrecht, 2003), p.27.

  14. B. Gompertz, Phil.Trans. Roy. Soc. Lond. A 15, 513 (1825).

    Article  Google Scholar 

  15. B. L. Strehler and A. S. Mildvan, Science See Saiensu 132, 14 (1960).

    ADS  Google Scholar 

  16. R. E. Ricklefs, Am. Nat. 152, 24 (1998).

    Article  Google Scholar 

  17. S. C. Steams, M. Ackermann, M. Doebeli, and M. Kaiser, Proc. Natl. Acad. Sci. U. S. A. 97, 3309 (2000).

    Article  ADS  Google Scholar 

  18. R. E. Ricklefs and A. Scheuerlein, Exp. Gerontol. 36, 845 (2001).

    Article  Google Scholar 

  19. A. B. Mitnitski, A. J. Mogilner, C. MacKnight, and K. Rockwood, Sci. World J. 2, 1816 (2002).

    Article  Google Scholar 

  20. J. W. Curtsinger, N. S. Gavrilova, and L. A. Gavrilov, in Handbook of the Biology of Aging, 6th ed., Ed. by E. J. Masoro and S. N. Austad (Elsevier, San Diego,CA, 2005), p. 265.

  21. N. S. Gavrilova and L. A. Gavrilov, in International Handbook of Population Aging, Ed. by P. Uhlenberg, (Springer Science + Business Media B.V., 2009), p. 113. doi 10.1007/978-1-4020-8356-3_610.1007/978- 1-4020-8356-3_6

  22. J. J. Boonekamp, M. S. Simons, K. L. Hemerik, et al., Aging Cell 12, 330 (2013).

    Article  Google Scholar 

  23. H. Strulik and S. Vollmer, J. Population Econ. 26, 1303 (2013).

    Article  Google Scholar 

  24. G. Levy and B. Levin, The Biostatistics of Aging: From Gompertzian Mortality to an Index of Aging Relatedness (Wiley, Chichester, 2014).

    Book  Google Scholar 

  25. T. B. L. Kirkwood, Phil. Trans. R. Soc. Lond. B 370, 20140379 (2015).

    Article  Google Scholar 

  26. L. A. Gavrilov and N. S. Gavrilova, The Biology of Longevity (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  27. V. N. Krut’ko, A. A. Kudashov, and V. E. Chernilevskii, in Proceedings of Moscow Society of Naturalists, Section of Gerontology, Vol. 59, Ed. by V. E. Chernilevskii (Tsifrovichek, Moscow, 2015), p. 12 [in Russian].

  28. V. E. Chernilevskii and A. A. Kudryashov, in Proceedings of Moscow Society of Naturalists, Section of Gerontology, Vol. 59, Ed. by V. E. Chernilevskii (Tsifrovichek, Moscow, 2015), p. 3 [in Russian].

  29. A. V. Karnaukhov and E. V. Karnaukhova, Biophysics (Moscow) 54 (4), 531 (2009).

    Article  Google Scholar 

  30. A. V. Karnaukhov, E. V. Karnaukhova, L. A. Sergievich, et al., Biophysics (Moscow) 59 (4), 646 (2014).

    Article  Google Scholar 

  31. L. A. Sergievich, A. V. Karnaukhov, E. V. Karnaukhova, et al., Biophysics (Moscow) 59 (4), 608 (2014).

    Article  Google Scholar 

  32. A. V. Karnaukhov, E. V. Karnaukhova, L. A. Sergievich, et al., Biophysics (Moscow) 59 (6), 921 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Karnaukhov.

Additional information

Original Russian Text © A.V. Karnaukhov, E.V. Karnaukhova, L.A. Sergievich, N.A. Karnaukhova, E.V. Bogdanenko, I.A. Manokhina, V.N. Karnaukhov, 2017, published in Biofizika, 2017, Vol. 62, No. 5, pp. 1008–1015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnaukhov, A.V., Karnaukhova, E.V., Sergievich, L.A. et al. The information theory of aging: The major factors that determine lifespan. BIOPHYSICS 62, 829–835 (2017). https://doi.org/10.1134/S0006350917050098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917050098

Keywords

Navigation