Skip to main content
Log in

Characterization of lipodisc nanoparticles containing sensory rhodopsin II and its cognate transducer from Natronomonas pharaonis

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We describe the preparation and properties of lipodisc nanoparticles–lipid membrane fragments with a diameter of about 10 nm, stabilized by amphiphilic synthetic polymer molecules. We used the lipodisc nanoparticles made of Escherichia coli polar lipids and compared lipodisc nanoparticles that contained the photosensitive protein complex of the sensory rhodopsin with its cognate transducer from the halobacterium Natronomonas pharaonis with empty lipodisc nanoparticles that contained no protein. The lipodisc nanoparticles were characterized by dynamic light scattering, transmission electron microscopy and atomic force microscopy. We found that the diameter of lipodisc nanoparticles was not affected by incorporation of the protein complexes, which makes them a prospective platform for single-molecule studies of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Waldrop, Nature 505, 604 (2014).

    Article  ADS  Google Scholar 

  2. J. Hajdu, Curr. Opin. Struct. Biol. 10, 569 (2000).

    Article  Google Scholar 

  3. H. N. Chapman, P. Fromme, A. Barty, et al., Nature 470, 73 (2011).

    Article  ADS  Google Scholar 

  4. K. V. Shaitan, M. P. Kirpichnikov, V. S. Lamsin, et al., Vastn. RFFI 4, 38 (2014).

    Google Scholar 

  5. A. Deniaud, E. Moiseeva, V. Gordeliy, et al., in Membrane Protein Structure Determination, Ed. by J.-J. Lacapere (Humana Press, 2010), pp. 79–103.

  6. V. Cherezov, Curr. Opin. Struct. Biol. 21, 559 (2011).

    Article  Google Scholar 

  7. U. Weierstall, J. C. Spence, and R. B. Doak, Rev. Sci. Instrum. 83, 035108 (2012).

    Article  ADS  Google Scholar 

  8. R. Fung, V. Shneerson, D. K. Saldin, et al., Nat. Phys. 5, 64 (2009).

    Article  Google Scholar 

  9. A. Barty, J. Kupper, and H. N. Chapman, Annu. Rev. Phys. Chem. 64, 415 (2013).

    Article  ADS  Google Scholar 

  10. K. V. Shaitan, G. A. Armeev and A. K. Shaitan, Biophysics (Moscow) 61 (2), 177 (2016).

    Article  Google Scholar 

  11. J. A. Whiles, R. Deems, R. R. Vold, et al., Bioorg. Chem. 30, 431 (2002).

    Article  Google Scholar 

  12. M. Jamshad, Y. P. Lin, T. J. Knowles, et al., Biochem. Soc. Trans. 39, 813 (2011).

    Article  Google Scholar 

  13. J. Borch and T. Hamann, Biol. Chem. 390, 805 (2009).

    Article  Google Scholar 

  14. T. H. Bayburt and S. G. Sligar, FEBS Lett. 584, 1721 (2010).

    Article  Google Scholar 

  15. M. C. Orwick, P. J. Judge, J. Procek, et al., Angew. Chem. Int. Ed. 51, 4653 (2012).

    Article  Google Scholar 

  16. R. F. Zhang, I. D. Sahu, L. S. Liu, et al., Biochim. Biophys. Acta–Biomembranes 1848, 329 (2015).

    Article  Google Scholar 

  17. D. Li, J. Li, Y. L. Zhuang, et al., Protein Cell 6, 229 (2015).

    Article  Google Scholar 

  18. M. Orwick-Rydmark, J. E. Lovett, A. Graziadei, et al., Nano Lett. 12, 4687 (2012).

    Article  ADS  Google Scholar 

  19. D. Yu, Honors Scholar Theses 316 (2013).

    Google Scholar 

  20. A. R. Long, C. C. O’Brien, K. Malhotra, et al., BMC Biotechnol. 13 (2013).

    Google Scholar 

  21. J. M. Dorr, M. C. Koorengevel, M. Schafer, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 18607 (2014).

    Article  ADS  Google Scholar 

  22. T. J. Knowles, R. Finka, C. Smith, et al., J. Am. Chem. Soc. 131, 7484 (2009).

    Article  Google Scholar 

  23. M. Jamshad, V. Grimard, I. Idini, et al., Nano Res. 8, 774 (2015).

    Article  Google Scholar 

  24. E. N. Lyukmanova, Z. O. Shenkarev, A. S. Paramonov, et al., J. Am. Chem. Soc. 130, 2140 (2008).

    Article  Google Scholar 

  25. Z. O. Shenkarev, E. N. Lyukmanova, A. S. Paramonov, et al., J. Am. Chem. Soc. 132, 5628 (2010).

    Article  Google Scholar 

  26. A. Z. Kijac, Y. Li, S. G. Sligar, et al., Biochemistry 46, 13696 (2007).

    Article  Google Scholar 

  27. E. P. Gogol, N. Akkaladevi, L. Szerszen, et al., Prot. Sci. 22, 586 (2013).

    Article  Google Scholar 

  28. I. Orban-Glass, N. Voskoboynikova, K. B. Busch, et al., Biochemistry 54, 349 (2015).

    Article  Google Scholar 

  29. A. Royant, P. Nollert, K. Edman, et al., Proc. Natl. Acad. Sci. U. S. A. 98, 10131 (2001).

    Article  ADS  Google Scholar 

  30. H. Luecke, B. Schobert, J. K. Lanyi, et al., Science 293, 1499 (2001).

    Article  ADS  Google Scholar 

  31. V. I. Gordeliy, J. Labahn, R. Moukhametzianov, et al., Nature 419, 484 (2002).

    Article  ADS  Google Scholar 

  32. J. P. Klare, I. Chizhov, and M. Engelhard, Results Probl. Cell Differ. 45, 73 (2008).

    Article  Google Scholar 

  33. A. A. Wegener, I. Chizhov, M. Engelhard, et al., J. Mol. Biol. 301, 881 (2000).

    Article  Google Scholar 

  34. V. D. Trivedi and J. L. Spudich, Biochemistry 42, 13887 (2003).

    Article  Google Scholar 

  35. I. P. Hohenfeld, A. A. Wegener, and M. Engelhard, FEBS Lett. 442, 198 (1999).

    Article  Google Scholar 

  36. N. Mennes, J. P. Klare, I. Chizhov, et al., FEBS Lett. 581, 1487 (2007).

    Article  Google Scholar 

  37. K. Shimono, M. Iwamoto, M. Sumi, et al., FEBS Lett. 420, 54 (1997).

    Article  Google Scholar 

  38. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  39. J. Kriegsmann, M. Brehs, J. P. Klare, et al., Biochim. Biophys. Acta 1788, 522 (2009).

    Article  Google Scholar 

  40. C. D. Blanchette, J. A. Cappuccio, E. A. Kuhn, et al., Biochim. Biophys. Acta–Biomembranes 1788, 724 (2009).

    Article  Google Scholar 

  41. T. H. Bayburt, J. W. Carlson, and S. G. Sligar, Langmuir 16, 5993 (2000).

    Article  Google Scholar 

  42. T. H. Bayburt and S. G. Sligar, Proc. Natl. Acad. Sci. USA. 99, 6725 (2002).

    Article  ADS  Google Scholar 

  43. H. G. Yuk and D. L. Marshall, Appl. Environ. Microbiol. 69, 5115 (2003).

    Article  Google Scholar 

  44. B. A. Lewis and D. M. Engelman, J. Mol. Biol. 166, 211 (1983).

    Article  Google Scholar 

  45. S. Marchesini, H. He, H. N. Chapman, et al., Phys. Rev. B 68 (2003).

    Google Scholar 

  46. S. Gulati, M. Jamshad, T. J. Knowles, et al., Biochem. J. 461, 269 (2014).

    Article  Google Scholar 

  47. V. Postis, S. Rawson, J. K. Mitchell, et al., Biochim. Biophys. Acta–Biomembranes. 1848, 496 (2015).

    Article  Google Scholar 

  48. T. H. Bayburt and S. G. Sligar, Prot. Sci. 12, 2476 (2003).

    Article  Google Scholar 

  49. B. A. Chromy, E. Arroyo, C. D. Blanchette, et al., J. Am. Chem. Soc. 129, 14348 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bagrov.

Additional information

Original Russian Text © D.V. Bagrov, N. Voskoboynikova, G.A. Armeev, W. Mosslehy, G.S. Gluhov, T.T. Ismagulova, A.Y. Mulkidjanian, M.P. Kirpichnikov, H.-J. Steinhoff, K.V. Shaitan, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1139–1148.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagrov, D.V., Voskoboynikova, N., Armeev, G.A. et al. Characterization of lipodisc nanoparticles containing sensory rhodopsin II and its cognate transducer from Natronomonas pharaonis . BIOPHYSICS 61, 942–949 (2016). https://doi.org/10.1134/S0006350916060063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916060063

Keywords

Navigation