Skip to main content
Log in

Tidal variations of radon activity as a possible factor synchronizing biological processes

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Possible scenarios for synchronization of some biological processes with variations in the lunisolar gravitational tide acceleration are considered with regard to the trigger influence of the tidal force on the geological environment and the relevant modulation of the emanation and activity fields of radon and other radioactive elements. Mechanisms and models of the sensitivity of living systems to tidal variations of natural background radiation, including mitochondrial permeability transition, generation of reactive oxygen and nitrogen species, bystander factors, secondary biogenic radiation, modulation of cell signaling, and rhythmic gene expression, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UPE:

ultraweak photon emission

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

MPT:

mitochondrial permeability transition

MAPK:

mitogen-activated protein kinase

References

  1. B. M. Vladimirsky, Biophysics (Moscow) 43(4), 534 (1998).

    Google Scholar 

  2. V. V. Adushkin and A. A. Spivak, Izv., Phys. Solid Earth 48(3), 181 (2012).

    ADS  Google Scholar 

  3. A. L. Chizhevsky, Terrestrial Echo of Solar Storms (Mysl’, Moscow, 1976) [in Russian].

    Google Scholar 

  4. E. Naylor, Earth Moon Planets 85–86, 291 (2001).

    Google Scholar 

  5. C. C. Chabot and W. H. Watson, Curr. Zool. 56(5), 499 (2010).

    Google Scholar 

  6. P. W. Barlow, Commun. Integr. Biol. 5(5), 434 (2012).

    Google Scholar 

  7. J. Zantke, T. Ishikawa-Fujiwara, E. Arboleda, et al., Cell Rep. 5, 99 (2013).

    Google Scholar 

  8. L. Zhang, M. H. Hastings, E. W. Green, et al., Curr. Biol. 23, 1863 (2013).

    Google Scholar 

  9. A. Takemura, M. S. Rahman, and Y. J. Park, J. Fish Biol. 76, 7 (2010).

    Google Scholar 

  10. J. D. Palmer, BioEssays 22, 32 (2000).

    Google Scholar 

  11. J. T. Enright, in Biological Rhythms in the Marine Environment, Ed. by D.J. DeCoursey (Univ. of South Carolina Press, Columbia, SC, 1976), pp. 103–114.

  12. H. Takekata, Y. Matsuura, S. G. Goto, et al., Biol. Lett. 8, 488 (2012).

    Google Scholar 

  13. T. S. Kaiser, D. Neumann, and D. G. Heckel, BMC Genet. 12, 49 (2012).

    Google Scholar 

  14. T. S. Kaiser and D. G. Heckel, PLoS ONE 7(2), e32092 (2012).

    ADS  Google Scholar 

  15. K. M. Connor and A. Y. Gracey, Proc. Natl. Acad. Sci. USA. 108(38), 16110 (2011).

    ADS  Google Scholar 

  16. E. Zurcher, M. G. Cantiani, F. Sorbetti-Guerri, and D. Michel, Nature 392, 665 (1998).

    ADS  Google Scholar 

  17. V. M. Vorobeitchikov, E. S. Gorshkov, S. N. Shapovalov, et al., Biophysics (Moscow) 49(Suppl. 1), S68 (2004).

    Google Scholar 

  18. P. W. Barlow, E. Klingele, G. Klein, and M. Mikulecky, Sr., Plant Signal. Behav. 3(12), 1083 (2008).

    Google Scholar 

  19. P. W. Barlow, M. Mikulecky, Sr., J. Strestik, Protoplasma 247(1–2), 25 (2010).

    Google Scholar 

  20. J. Fisahn, N. Yazdanbakhsh, E. Klingele, and P. Barlow, New Phytol. 195(2), 346 (2012).

    Google Scholar 

  21. P. Barlow and J. Fisahn, Ann. Bot. 110(2) 301 (2012).

    Google Scholar 

  22. A. J. Moraes, P. W. Barlow, E. Klingele, and C. M. Gallep, Naturwissenschaften 99(6), 465 (2012).

    ADS  Google Scholar 

  23. C. M. Gallep, C. M. Moraes, S. R. dos Santos, and P. W. Barlow, Protoplasma 250(3), 793 (2013).

    Google Scholar 

  24. P. W. Barlow, J. Fisahn, N. Yazdanbakhsh, et al., Ann. Bot. 111(5), 859 (2013).

    Google Scholar 

  25. M. Sauer, M. Robert, and J. Kleine-Vehn, J. Exp. Bot. 64(9), 2565 (2013).

    Google Scholar 

  26. V. L. Voeikov, N. D. Vilenskaya, Do Minh Ha, et al., Russ. J. Phys. Chem. A 86(9), 1407 (2012).

    Google Scholar 

  27. T. Nishimura and M. Fukushima, Biosci. Hypoth. 2, 399 (2009).

    Google Scholar 

  28. V. L. Voeikov, Do Minh Ha, N. D. Vilenskaya, et al., La Medicina Biologica 4, 45 (2010).

    Google Scholar 

  29. A. M. Kuzin, Role of Natural Background Radiation and Secondary Biogenic Radiation in the Phenomenon of Life (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  30. V. P. Kaznacheev and L. P. Mikhailova, Bioinformation Function of Natural Electromagnetic Fields (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  31. C. J. Groves-Kirkby, A. R. Denman, R. G. M. Crockett, et al., Sci. Tot. Environ. 367(1), 191 (2006).

    Google Scholar 

  32. V. V. Adushkin, A. A. Spivak, and V. A. Kharlamov, Izv., Phys. Solid Earth 48(2), 104 (2012).

    ADS  Google Scholar 

  33. R. G. M. Crockett, G. K. Gillmore, P. S. Phillips, et al., Geophys. Res. Lett. 33(5), L05308 (2006).

    ADS  Google Scholar 

  34. A. A. Spivak, Izv., Phys. Solid Earth 45(4), 55 (2009).

    Google Scholar 

  35. A. M. Kuzin, V. P. Ruda, and E. G. Mozgovoi, Radiati. Environ. Biophys. 30(4), 259 (1991).

    Google Scholar 

  36. A. M. Kuzin, Radiobiologiya, Ser. Biol. 6, 824 (1993).

    Google Scholar 

  37. A. J. Wyrobek, C. F. Manohar, V. V. Krishnan, et al., Mutat. Res.: Genet. Toxicol. Environ. Mutagen. 722(2), 119 (2011).

    Google Scholar 

  38. E. Yin, D. O. Nelson, M. A. Coleman, et al., Int. J. Radiat. Biol. 79(10), 759 (2003).

    Google Scholar 

  39. Y. Xu, C. L. Greenstock, A. Trivedi, and R. E. J. Mitchel, Radiati. Environ. Biophys. 35(2), 89 (1996).

    Google Scholar 

  40. S. Tapio and S. Jacob, Radiat. Environ. Biophys. 46(1), 1 (2007).

    Google Scholar 

  41. A. M. Hooker, M. Bhat, T. K. Day, et al., Radiat. Res. 162(4), 447 (2004).

    Google Scholar 

  42. J. K. Leach, G. Van Tuyle, P.-S. Lin, et al., Cancer Res. 61, 3894 (2001).

    Google Scholar 

  43. R. B. Mikkelsen and P. Wardman, Oncogene 22, 5734 (2003).

    Google Scholar 

  44. A. M. Kuzin, Biol. Bull. 24(2), 113 (1997).

    Google Scholar 

  45. E. B. Burlakova, Ross. Khim. Zh. 43(5), 3 (1999).

    Google Scholar 

  46. D. Siemen and M. Ziemer, IUBMB Life 65(3), 255 (2013).

    Google Scholar 

  47. P. K. Narayanan, E. H. Goodwin, and B. E. Lehnert, Cancer Res. 57(18), 3963 (1997).

    Google Scholar 

  48. Yu. A. Krasylenko, A. I. Yemets, and Ya. B. Blume, Russ. J. Plant Physiol. 57(4), 451 (2010).

    Google Scholar 

  49. A. Besson-Bard, J. Astier, S. Rasul, et al., Plant Sci. 177, 302 (2009).

    Google Scholar 

  50. J. Astier, A. Kulik, E. Koen, et al., Free Rad. Biol. Med. 53(5), 1101 (2012).

    Google Scholar 

  51. A. I. Yemets, Yu. A. Krasylenko, Ya. A. Sheremet, and Ya. B. Blume, Cytol. Genet. 43(2), 73 (2009).

    Google Scholar 

  52. C. M. C. P. Gouvea, J. F. Souza, A. C. N. Magalhaes, and I. S. Martins, Plant Growth Reg. 21(3), 183 (1997).

    Google Scholar 

  53. C. Courtois, A. Besson, J. Dahan, et al., J. Exp. Bot. 59(2), 155 (2008).

    Google Scholar 

  54. S. M. Schieke, K. Briviba, L. O. Klotz, et al., FEBS Lett. 448(2–3), 301 (1999).

    Google Scholar 

  55. Z. Balafanova, R. Bolli, J. Zhang, et al., J. Biol. Chem. 277(17), 15021 (2002).

    Google Scholar 

  56. H. M. Lander, H. M. Jacovina, R. J. Davis, et al., J. Biol. Chem. 271(33), 19705 (1996).

    Google Scholar 

  57. X. T. Wang, J. L. Martindale, Y. S. Liu, et al., Biochem. J. 333, 291 (1998).

    Google Scholar 

  58. A. S. Baas and B. C. Berk, Circulation Res. 77(1), 29 (1995).

    Google Scholar 

  59. G. C. Pagnussat, G. C. Lanteri, M. C. Lombardo, and L. Lamattina, Plant Physiol. 135(1), 279 (2004).

    Google Scholar 

  60. E. Pineda-Molina and S. Lamas, Biofactors 15(2–4), 113 (2001).

    Google Scholar 

  61. J. D. Chiche, S. M. Schlutsmeyer, D. B. Bloch, et al., J. Biol. Chem. 273(51), 34263 (1998).

    Google Scholar 

  62. W. Droge, Physiol. Rev. 82(1), 47 (2002).

    Google Scholar 

  63. R. S. Balaban, S. Nemoto, and T. Finkel, Cell 120(4), 483 (2005).

    Google Scholar 

  64. M. P. Murphy, Biochem. J. 417, 1 (2009).

    Google Scholar 

  65. H. Nagasawa and J. B. Little, Cancer Res. 52(22), 6394 (1992).

    Google Scholar 

  66. F. Ballarini, M. Biaggi, A. Ottolenghi, et al., Mutat. Res. 501(1–2), 1 (2002).

    Google Scholar 

  67. M. A. Kadhim, S. R. Moore, and E. H. Goodwin, Mutat. Res. 568, 21 (2004).

    Google Scholar 

  68. K. L. Chapman, J. W. Kelly, R. Lee, et al., J. Pharm. Pharmacol. 60, 959 (2008).

    Google Scholar 

  69. B. E. Lehnert and E. H. Goodwin, Cancer Res. 57, 2164 (1997).

    Google Scholar 

  70. J. B. Little, F. I. Azzam, S. M. de Toledo, and H. Nagasawa, Rad. Protect. Dosim. 99(1–4), 159 (2002).

    Google Scholar 

  71. C. Shao, V. Stewart, M. Folkard, et al., Cancer Res. 63(23), 8437 (2003).

    Google Scholar 

  72. F. Banaz-Yasar, K. Lennartz, E. Winterhager, and A. Gellhaus, J. Cell. Biochem. 103(1), 149 (2008).

    Google Scholar 

  73. F. M. Lyng, C. B. Seymour, and C. Mothersill, Rad. Protect. Dosim. 99(1–4), 169 (2002).

    Google Scholar 

  74. H. Nagasawa, A. Cremesti, R. Kolesnick, et al., Cancer Res. 62(9), 2531 (2002).

    Google Scholar 

  75. A. M. Kuzin, Byukk. Eksp. Biol. Med. 123(4), 364 (1997).

    Google Scholar 

  76. A. M. Kuzin, G. N. Surkenova, and A. F. Revin, Biofizika 40(6), 1358 (1995).

    Google Scholar 

  77. Yu. A. Vladimirov and E. V. Proskurina, Usp. Biol. Khim. 49, 341 (2009).

    Google Scholar 

  78. F. Scholkmann, M. Cifra, T. A. Moraes, et al., J. Phys. 329, 012020 (2011).

    Google Scholar 

  79. I. V. Baskakov and V. L. Voeikov, Biokhimiya 61(7), 1169 (1996).

    Google Scholar 

  80. M. Cifra, J. Z. Fields, and A. Farhadi, Progr. Biophys. Mol. Biol. 105, 223 (2011).

    Google Scholar 

  81. A. M. Kuzin and G. M. Surkenova, Dokl. Ross. Akad. Nauk 337(4), 535 (1994).

    Google Scholar 

  82. W. Goraczko, Med. Hypoth. 54(3), 461 (2000).

    Google Scholar 

  83. A. M. Kuzin and G. M. Surkenova, Radiat. Biol. Radioekol. 39(1), 84 (1999).

    Google Scholar 

  84. A. M. Kuzin, G. M. Surkenova, S. I. Zaichkina, et al., Dokl. Ross. Akad. Nauk 358(1), 122 (1998).

    Google Scholar 

  85. A. G. Gurvich, Mitogenetic Radiation (Moscow, 1945) [in Russian].

    Google Scholar 

  86. C. Mothersill, R. W. Smith, J. Fazzari, et al., Int. J. Radiat. Biol. 88(8), 583 (2012).

    Google Scholar 

  87. Yu. A. Nikolaev, Mikrobiologiya 61(6), 1066 (1992).

    MathSciNet  Google Scholar 

  88. G. Albrecht-Buehler, Proc. Natl. Acad. Sci. USA. 89(17), 8288 (1992).

    ADS  Google Scholar 

  89. V. L. Voeikov, C. V. Novikov, and N. D. Vilenskaya, J. Biomed. Optics 4(1), 54 (1999).

    ADS  Google Scholar 

  90. A. B. Burlakov, O. V. Burlakova, and V. A. Golichenkov, Dokl. Biol. Sci. 368, 487 (1999).

    Google Scholar 

  91. I. V. Volodyaev and L. V. Beloussov, Russ. J. Dev. Biol. 38(5), 322 (2007).

    Google Scholar 

  92. V. D. Burkov, A. B. Burlakov, S. V. Perminov, et al., Biomed. Radioelectr. 8–9, 41 (2008).

    Google Scholar 

  93. H. G. McWatters and P. F. Devlin, FEBS Lett. 585(10), 1474 (2011).

    Google Scholar 

  94. O. E. Blasing, Y. Gibon, M. Gunther, et al., Plant Cell 17, 3257 (2005).

    Google Scholar 

  95. W. Engelmann, K. Simon, and C. J. Phen, Z. Naturforsch. 47(11–12), 925 (1992).

    Google Scholar 

  96. D. Somers, A. A. R. Webb, M. Pearson, and S. A. Kay, Development 125(3), 485 (1998).

    Google Scholar 

  97. C. H. Johnson, M. R. Knight, T. Kondo, et al., Science 269, 1863 (1995).

    ADS  Google Scholar 

  98. A. Hall, L. Kozma-Bognar, L. Toth, et al., Plant Physiol. 127(4), 1808 (2001).

    Google Scholar 

  99. A. J. Millar, J. Exp. Bot. 55(395), 277 (2004).

    Google Scholar 

  100. P. A. Wigge, Curr. Opin. Plant Biol. 16(5), 661 (2013).

    Google Scholar 

  101. T. P. Michael, P. A. Salome, and C. R. McClung, Proc. Natl. Acad. Sci. USA. 100(11), 6878 (2003).

    ADS  Google Scholar 

  102. C. Kami, M. Hersch, M. Trevisan, et al., Plant Cell 24(2), 566 (2012).

    Google Scholar 

  103. A. K. Franklin and P. H. Quail, J. Exp. Bot. 61(1), 11 (2010).

    Google Scholar 

  104. C. Fankhauser and D. Staiger, Planta 216(1), 1 (2002).

    Google Scholar 

  105. J. T. M. Kennis and M. L. Groot, Curr. Opin. Struct. Biol. 17, 623 (2007).

    Google Scholar 

  106. F. Nagy, S. Kircher, and E. Schafer, J. Cell Sci. 114(3), 475 (2001).

    Google Scholar 

  107. P. H. Quail, Curr. Biol. 20(12), R504 (2010).

    Google Scholar 

  108. J. Soy, P. Leivar, N. Gonzalez-Schain, et al., Plant J. 71(3), 390 (2012).

    Google Scholar 

  109. F. J. Salisbury, A. Hall, C. S. Grierson, and K. J. Halliday, Plant J. 50, 429 (2007).

    Google Scholar 

  110. M. J. Correll and J. Z. Kiss, Plant Cell Physiol. 46(2), 317 (2005).

    Google Scholar 

  111. S. E. Costigan, S. N. Warnasooriya, B. A. Humphries, and B. L. Montgomery, Plant Physiol. 157, 1138 (2011).

    Google Scholar 

  112. M. Ahmad, J. A. Jarillo, O. Smirnova, and A. R. Cashmore, Mol. Cell 1(7), 939 (1998).

    Google Scholar 

  113. U. Luettge and B. Hertel, Trees Struct. Funct. 23(4), 683 (2009).

    Google Scholar 

  114. A. R. Canamero, N. Bakrim, J.-P. Bouly, et al., Planta 224(5), 995 (2006).

    Google Scholar 

  115. M. S. Kritsky, T. A. Telegina, Yu, L. Vechtomova, et al., Biochemistry (Moscow) 75(10), 1200 (2010).

    Google Scholar 

  116. M. Ahmad, J. A. Jarillo, O. Smirnova, and A. R. Cashmore, Nature 392, 720 (1998).

    ADS  Google Scholar 

  117. H. Liu, B. Liu, C. Zhao, et al., Trends Plant Sci. 16(12), 684 (2011).

    Google Scholar 

  118. J. Li, L. Yang, D. Jin, et al., Protein Cell 4(7), 485 (2013).

    Google Scholar 

  119. O. Levy, L. Appelbaum, W. Leggat, et al., Science 318(5849), 467 (2007).

    ADS  Google Scholar 

  120. K. Sakamoto and W. R. Briggs, Plant Cell 14(8), 1723 (2002).

    Google Scholar 

  121. H. K. Wade, T. N. Bibikova, W. J. Valentine, et al., Plant J. 25(6), 675 (2001).

    Google Scholar 

  122. Y. J. Yang, Z. Ch. Zuo, X. Y. Zhao, et al., Mol. Plant 1(1), 167 (2008).

    Google Scholar 

  123. B. Kang, N. Grancher, V. Koyffmann, et al., Planta 227(5), 1091 (2008).

    Google Scholar 

  124. N. Uehlein and R. Kaldenhoff, Ann. Bot. 101, 1 (2008).

    Google Scholar 

  125. A. Sancar, J. Biol. Chem. 279(33), 34079 (2004).

    Google Scholar 

  126. S. G. Goto, Entomol. Sci. 16(1), 1 (2013).

    Google Scholar 

  127. F. M. Megli and K. Sabatini, FEBS Lett. 550(1–3), 185 (2003).

    Google Scholar 

  128. V. N. Olshyk, I. V. Melsitova, and L. Yurkova, Chem. Phys. Lipids 177, 1 (2014).

    Google Scholar 

  129. L. A. Bagatolli, J. H. Ipsen, A. C. Simonsen, and O. G. Mouritsen, Prog. Lipid Res. 49(4), 378 (2010).

    Google Scholar 

  130. R. Phillips, T. Ursell, P. Wiggins, et al., Nature 459(7245), 379 (2009).

    ADS  Google Scholar 

  131. A. G. Lee, Trends Biochem. Sci. 36(9), 493 (2011).

    Google Scholar 

  132. J. A. Poveda, A. M. Giudici, M. L. Renart, et al., Biochim. Biophys. Acta: Biomembr. 1838(6), 1560 (2014).

    Google Scholar 

  133. H. Haviv, M. Habeck, R. Kanai, et al., J. Biol. Chem. 288(14), 10073 (2013).

    Google Scholar 

  134. S. L. Reichow and T. Gonen, Curr. Opin. Struct. Biol. 19(5), 560 (2009).

    Google Scholar 

  135. P. J. Stansfeld, E. E. Jefferys, and M. S. P. Sansom, Structure 21(5), 810 (2013).

    Google Scholar 

  136. H. Vitrac, M. Bogdanov, P. Heacock, et al., J. Biol. Chem. 286(17), 15182 (2011).

    Google Scholar 

  137. Y. Temmei, S. Uchida, D. Hoshino, et al., FEBS Lett. 579(20), 4417 (2005).

    Google Scholar 

  138. G. I. Voitov, Izv., Phys. Solid Earth 34(1), 23 (1998).

    Google Scholar 

  139. S. E. Shnoll, Biophysics (Moscow) 46(5), 731 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zakhvataev.

Additional information

Original Russian Text © V.E. Zakhvataev, 2015, published in Biofizika, 2015, Vol. 60, No. 1, pp. 176–196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhvataev, V.E. Tidal variations of radon activity as a possible factor synchronizing biological processes. BIOPHYSICS 60, 140–156 (2015). https://doi.org/10.1134/S0006350915010273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915010273

Keywords

Navigation