Skip to main content
Log in

Atomic force microscopy monitoring of the temperature dependence of the cytochrome BM3 oligomeric state

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Change in temperature is one of the factors affecting the activity of enzymes. In this work, the thermal denaturation and aggregation of cytochrome P450 BM3 were studied by atomic force microscopy. The specific temperature transitions were studied by fluorescence analysis. In the low melting temperature range (10–33°C), a decrease in the fluorescence intensity of the aromatic residues was observed simultaneously with an increase in the fluorescence intensity of the flavin groups. The protein melting in this range indicated three narrow S-shaped cooperative transitions at 16, 22, and 29°C. Atomic force microscopy analysis in this temperature range showed that the BM3 molecules retained a globular shape as compact objects (heights, h < 7 nm; lateral dimensions, d < 50 nm), but the protein oligomeric state changed. The first two transitions were accompanied by a decrease in the degree of oligomerization and the third one by its increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscopy

References

  1. L. O. Narhi and A. J. Fulco, J. Biol. Chem. 261, 7160 (1986).

    Google Scholar 

  2. I. Sevrioukova, H. Li, H. Zhang, et al., Proc. Natl. Acad. Sci. U. S. A. 96, 1863 (1999).

    Article  ADS  Google Scholar 

  3. A. W. Munro, S. Daff, J. R. Coqqins, et al., Eur. J. Biochem. 239, 403 (1996).

    Article  Google Scholar 

  4. R. Neeli, H. M. Girvan, A. Lawrence, et al., FEBS Lett. 579, 5582 (2005).

    Article  Google Scholar 

  5. Yu. D. Ivanov, N. S. Bukharina, T. O. Pleshakova, et al., Biophysics 56, 892 (2011).

    Article  Google Scholar 

  6. S. C. Maurer, H. Schulze, R. D. Schmid, and V. Urlacher, Adv. Synth. Catal. 345, 802 (2003).

    Article  Google Scholar 

  7. A. W. Munro, J. G. Lindsay, J. R. Coggins, et al., Biochem. Biophys. Acta 1296, 127 (1996).

    Google Scholar 

  8. D. J. Muller and A. Engel, Nat. Protoc. 2, 2191 (2007).

    Google Scholar 

  9. V. Y. Kuznetsov, Yu. D. Ivanov, V. A. Bykov, et al., Proteomics 2, 1699 (2002).

    Article  Google Scholar 

  10. Yu. D. Ivanov, P. A. Frantsuzov, A. Zollner, et al., Res. Lett. 6, 54 (2011).

    Google Scholar 

  11. V. Y. Kuznetsov, Yu. D. Ivanov, and A. I. Archakov, Proteomics 4, 2390 (2004).

    Article  Google Scholar 

  12. Yu. D. Ivanov, P. A. Frantsuzov, V. A. Bykov, et al., Anal. Methods 2, 688 (2010).

    Article  Google Scholar 

  13. Yu. D. Ivanov, N. S. Bukharina, P. A. Frantsuzov, et al., Soft Matter 8, 4602 (2012).

    Article  ADS  Google Scholar 

  14. T. Kitazume, D. C. Haines, R. W. Estabrook, et al., Biochemistry 46, 11892 (2007).

    Article  Google Scholar 

  15. H. M. Girvan, A. J. Dunford, R. Neeli, et al., Arch. Biochem. Biophys. 507, 75 (2010).

    Article  Google Scholar 

  16. A. D. Miller and J. Tanner, in Essentials of Chemical Biology: Structure and Dynamics of Biological Macromolecules (Wiley, England, 2008), pp. 196–197.

    Google Scholar 

  17. A. W. Munro and M. A. Noble, in Flavoprotein Protocols (Humana Press, Totowa, NJ, 1999), pp. 25–48.

    Book  Google Scholar 

  18. B. Carmichael and L. L. Wong, Eur. J. Biochem. 268, 3117 (2001).

    Article  Google Scholar 

  19. T. Omura and R. Sato, J. Biol. Chem. 239, 2370 (1964).

    Google Scholar 

  20. K. Khan, S. Mazumdar, S. Modi, et al., Eur. J. Biochem. 244, 361 (1997).

    Article  Google Scholar 

  21. A. W. Munro, M. A. Noble, T. Ost, et al., in Subcellular Biochemistry (Kluwer-Plenum, New York, 2000), vol. 35, pp. 297–315.

    Google Scholar 

  22. A. Kowalska, M. Gyugos, D. Szego, et al., Food Chem. Biotech. 71, 35 (2007).

    Google Scholar 

  23. F. Forneris, R. Orru, D. Bonivento, et al., FEBS J. 276, 2833 (2009).

    Article  Google Scholar 

  24. A. I. Alexandrov, M. Mileni, E. Y. Chien, et al., Structure 16, 351 (2008).

    Article  Google Scholar 

  25. V. N. Uversky and O. B. Ptitsyn, Fold. Des. 1, 117 (1996).

    Article  Google Scholar 

  26. E. I. Shakhnovich and A. V. Finkelstein, Biopolymers 28, 1667 (1989).

    Article  Google Scholar 

  27. G. N. Ling, Life at the Cell and Below-Cell Level (Pacific Press, New York, 2001).

    Google Scholar 

  28. A. P. Jamakhandi, B. C. Jeffus, V. R. Dass, et al., Arch. Biochem. Biophys. 439, 165 (2005).

    Article  Google Scholar 

  29. R. Day, B. J. Bennion, S. Ham, and V. Daggett, J. Mol. Biol. 322, 189 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bukharina.

Additional information

Original Russian Text © N.S. Bukharina, Yu.D. Ivanov, T.O. Pleshakova, P.A. Frantsuzov, N.D. Ivanova, N.V. Krohin, N.A. Petushkova, A.I. Archakov, 2015, published in Bionsfizika, 2015, Vol. 60, No. 1, pp. 80–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukharina, N.S., Ivanov, Y.D., Pleshakova, T.O. et al. Atomic force microscopy monitoring of the temperature dependence of the cytochrome BM3 oligomeric state. BIOPHYSICS 60, 66–72 (2015). https://doi.org/10.1134/S000635091501008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091501008X

Keywords

Navigation