Skip to main content
Log in

Role of bound water in protein-ligand association processes

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The role of water molecules on the protein-ligand interface during macromolecular association has been determined. The free energy of association of insulin has been calculated by the methods of molecular mechanics and continual electrostatics (Poisson-Boltzmann model). The previously developed scheme of the decomposition of association free energy onto contributions from individual interactions has been used to calculate intermolecular interactions, the solvation free energy, and the entropies of the process of macromolecular association. An analysis of the calculated oscillation spectra indicated that the presence of water molecules on the protein-protein interface promotes an increase in the contribution of vibration entropy to the free energy of association due to the enhancement of the flexibility of the complex. It was shown that water molecules involved in the formation of protein-water-ligand hydrogen bond network change the balance of forces in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Huber and W. Steigmann, J. Mol. Biol. 889, 73 (1974).

    Article  Google Scholar 

  2. J. Janin and C. Chotia, J. Mol. Biol. 100, 197 (1976).

    Article  Google Scholar 

  3. K. Wutrich, Cold. Spring. Harbor. Symp. Quant. Biol. 58, 149 (1993).

    Google Scholar 

  4. J. Janin, Structure 7, 277 (1999).

    Article  Google Scholar 

  5. T. N. Bhat, G. A. Bentley, G. Boulot, et al., Proc. Natl. Acad. Sci. USA 91, 1089 (1994).

    Article  ADS  Google Scholar 

  6. M. Billeter, Proc. Mag. Res. Spectr. 27, 635 (1995).

    Article  Google Scholar 

  7. A. G. Yakovlev and V. A. Shuvalov, Biokhimiya 68, 603 (2003).

    Google Scholar 

  8. R. K. Ledneva, A. V. Alekseevskii, S. A. Vasil’ev, et al., Mol. Biol. 35, 647 (2001).

    Article  Google Scholar 

  9. L. LoConte and J. Janin, J. Mol. Biol. 285, 2177 (1999).

    Article  Google Scholar 

  10. A. R. Dunn, I. J. Dmochowski, A. M. Bilwes, et al., Proc. Natl. Acad. Sci. USA 98, 12420 (2001).

    Article  ADS  Google Scholar 

  11. S. Fischer and C. S. Verma, Proc. Natl. Acad. Sci. USA 96, 9613 (1999).

    Article  ADS  Google Scholar 

  12. S. Fischer, J. C. Smith, and C. S. Verma, J. Phyz. Chem. 105, 8050 (2001).

    Article  Google Scholar 

  13. Y. Takano, S. Yamagata, and K. Yutani, Protein Eng. 16(1), 5 (2003).

    Article  Google Scholar 

  14. S. Y. Noskov and C. Lim, Biophys. J. 81, 737 (2001).

    Article  Google Scholar 

  15. A. D. Mackerel, D. Bashford, M. Bellot, et al., J. Phys. Chem. B. 102, 3586 (1998).

    Article  Google Scholar 

  16. W. Im, D. Beglov, and B. Roux, Comput. Phys. Commun. 109, 1 (1998).

    Article  Google Scholar 

  17. M. Nina, D. Beglov, and B. Roux, J. Phys. Chem. B. 101(26), 5239 (1997).

    Article  Google Scholar 

  18. E. J. Dodson, G. G. Dodson, R. E. Hubbard, et al., Phyl. Trans. Royal. Soc: Series A 345, 153 (1993).

    Article  ADS  Google Scholar 

  19. J. Brange, U. Riebel, J. F. Hansen, et al., Nature 333, 679 (1988).

    Article  ADS  Google Scholar 

  20. B. Tidor and M. Karplus, J. Mol. Biol. 238, 405 (1994).

    Article  Google Scholar 

  21. G. Giraud, J. Karolin, and K. Wynne, Biophys. J. 85, 1903 (2003).

    Article  Google Scholar 

  22. V. Crupi, D. Majolino, P. Migliardo, and V. Venuti, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 82, 425 (2002).

    ADS  Google Scholar 

  23. J. C. Smith, F. Merzel, C. S. Verma, and S. Fischer, J. Mol. Liquids 101, 27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Kiselev.

Additional information

Original Russian Text © S.Yu. Noskov, M.G. Kiselev, A.M. Kolker, 2010, published in Biofizika, 2010, Vol. 55, No. 1, pp. 39–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noskov, S.Y., Kiselev, M.G. & Kolker, A.M. Role of bound water in protein-ligand association processes. BIOPHYSICS 55, 29–34 (2010). https://doi.org/10.1134/S0006350910010069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910010069

Key words

Navigation