Skip to main content
Log in

Molecular Mechanisms of Astrocyte Involvement in Synaptogenesis and Brain Synaptic Plasticity

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Astrocytes perform a wide range of important functions in the brain. As structural and functional components of synapses, astrocytes secrete various factors (proteins, lipids, small molecules, etc.) that bind to neuronal receptor and contribute to synaptogenesis and regulation of synaptic contacts. Astrocytic factors play a key role in the formation of neural networks undergoing short- and long-term synaptic morphological and functional rearrangements essential in the memory formation and behavior. The review summarizes the data on the molecular mechanisms mediating the involvement of astrocyte-secreted factors in synaptogenesis in the brain and provides up-to-date information on the role of astrocytes and astrocytic synaptogenic factors in the long-term plastic rearrangements of synaptic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

γ-Pcdh:

γ-protocadherin

AMPAR:

postsynaptic AMPA receptor

BDNF:

brain-derived neurotrophic factor

Chrdl1:

chordin-like protein 1

GPC:

glypican

hevin:

high endothelial venule protein

LTD:

long-term depression

LTP:

long-term potentiation

PAP:

perisynaptic astrocytic process

PTX3:

pentraxin 3

RGC:

retinal ganglion cell

SHH:

Sonic hedgehog

SPARC:

secreted protein, acidic and rich in cysteine

SREBP:

sterol regulatory element-binding protein

TGF-β:

transforming growth factor β

TSP:

thrombospondin

References

  1. Abbink, M. R., van Deijk, A. F., Heine, V. M., Verheijen, M. H., and Korosi, A. (2019) The involvement of astrocytes in early-life adversity induced programming of the brain, Glia, 67, 1637-1653, https://doi.org/10.1002/glia.23625.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perez-Catalan, N. A., Doe, C. Q., and Ackerman, S. D. (2021) The role of astrocyte-mediated plasticity in neural circuit development and function, Neural Dev., 16, 1, https://doi.org/10.1186/s13064-020-00151-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aleksandrova, M. A., and Sukhinich, K. K. (2022) Astrocytes of the brain: retinue plays the king, Russ. J. Dev. Biol., 53, 252-271, https://doi.org/10.1134/S1062360422040026.

    Article  Google Scholar 

  4. Fossati, G., Matteoli, M., and Menna, E. (2020) Astrocytic factors controlling synaptogenesis: a team play, Cells, 9, 2173, https://doi.org/10.3390/cells9102173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bayraktar, O. A., Fuentealba, L. C., Alvarez-Buylla, A., and Rowitch, D. H. (2015) Astrocyte development and heterogeneity, Cold Spring Harb. Perspect. Biol., 7, a020362, https://doi.org/10.1101/cshperspect.a020362.

    Article  PubMed Central  Google Scholar 

  6. Buosi, A. S., Matias, I., Araujo, A. P. B., Batista, C., and Gomes, F. C. A. (2018) Heterogeneity in synaptogenic profile of astrocytes from different brain regions, Mol. Neurobiol., 55, 751-762, https://doi.org/10.1007/s12035-016-0343-z.

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin, K. T., and Eroglu, C. (2017) Molecular mechanisms of astrocyte-induced synaptogenesis, Curr. Opin. Neurobiol., 45, 113-120, https://doi.org/10.1016/j.conb.2017.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qi, C., Luo, L. D., Feng, I., and Ma, S. (2022) Molecular mechanisms of synaptogenesis, Front. Synaptic Neurosci., 14, 939793, https://doi.org/10.3389/fnsyn.2022.939793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Durkee, C. A., and Araque, A. (2019) Diversity and specificity of astrocyte-neuron communication, Neuroscience, 396, 73-78, https://doi.org/10.1016/j.neuroscience.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  10. Hasan, U., and Singh, S. K. (2019) The astrocyte-neuron interface: An overview on molecular and cellular dynamics controlling formation and maintenance of the tripartite synapse, Methods Mol. Biol., 1938, 3-18, https://doi.org/10.1007/978-1-4939-9068-9_1.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W., and Barres, B. A. (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture, Neuron, 15, 805-819, https://doi.org/10.1016/0896-6273(95)90172-8.

    Article  CAS  PubMed  Google Scholar 

  12. Nägler, K., Mauch, D. H., and Pfrieger, F. W. (2001) Glia-derived signals induce synapse formation in neurones of the rat central nervous system, J. Physiol., 533, 665-679, https://doi.org/10.1111/j.1469-7793.2001.00665.x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pfrieger, F. W., and Barres, B. A. (1997) Synaptic efficacy enhanced by glial cells in vitro, Science, 277, 1684-1687, https://doi.org/10.1126/science.277.5332.1684.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, M. A., Weick, J. P., Pearce, R. A., and Zhang, S. C. (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture, J. Neurosci., 27, 3069-3077, https://doi.org/10.1523/JNEUROSCI.4562-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farhy-Tselnicker, I., and Allen, N. J. (2018) Astrocytes, neurons, synapses: a tripartite view on cortical circuit development, Neural Dev., 13, 7, https://doi.org/10.1186/s13064-018-0104-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saint-Martin, M., and Goda, Y. (2022) Astrocyte-synapse interactions and cell adhesion molecules, FEBS J., https://doi.org/10.1111/febs.16540.

    Article  PubMed  Google Scholar 

  17. Tan, C. X., and Eroglu, C. (2021) Cell adhesion molecules regulating astrocyte-neuron interactions, Curr. Opin. Neurobiol., 69, 170-177, https://doi.org/10.1016/j.conb.2021.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Augusto-Oliveira, M., Arrifa, A., and Crespo-Lopez, M. E. (2020) Astroglia-specific contributions to the regulation of synapses, cognition and behavior, Neurosci. Biobehav. Rev., 118, 331-357, https://doi.org/10.1016/j.neubiorev.2020.07.039.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes, E. G., Elmariah, S. B., and Balice-Gordon, R. J. (2010) Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis, Mol. Cell. Neurosci., 43, 136-145, https://doi.org/10.1016/j.mcn.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  20. Shan, L., Zhang, T., Fan, K., Cai, W., and Liu, H. (2021) Astrocyte-neuron signaling in synaptogenesis, Front. Cell. Dev. Biol., 9, 680301, https://doi.org/10.3389/fcell.2021.680301.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Adams, J. C. (2001) Thrombospondins: multifunctional regulators of cell interactions, Annu. Rev. Cell Dev. Biol., 17, 25-51, https://doi.org/10.1146/annurev.cellbio.17.1.25.

    Article  CAS  PubMed  Google Scholar 

  22. Christopherson, K. S., Ullian, E. M., Stokes, C. C., Mullowney, C. E., Hell, J. W., Agah, A., Lawler, J., Mosher, D. F., Bornstein, P., and Barres, B. A. (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis, Cell, 120, 421-433, https://doi.org/10.1016/j.cell.2004.12.020.

    Article  CAS  PubMed  Google Scholar 

  23. Risher, W. C., and Eroglu, C. (2012) Thrombospondins as key regulators of synaptogenesis in the central nervous system, Matrix Biol., 31, 170-177, https://doi.org/10.1016/j.matbio.2012.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eroglu, C., Allen, N. J., Susman, M. W., O’Rourke, N. A., Park, C. Y., Ozkan, E., Chakraborty, C., Mulinyawe, S. B., Annis, D. S., Huberman, A. D., Green, E. M., Lawler, J., Dolmetsch, R., Garcia, K. C., Smith, S. J., Luo, Z. D., Rosentha, l. A., Mosher, D. F., and Barres, B. A. (2009) Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis, Cell, 139, 380-392, https://doi.org/10.1016/j.cell.2009.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Risher, W. C., and Eroglu, C. (2020) Astrocytes and synaptogenesis, in Synapse Development and Maturation, 2nd Edition, Acad. Press, pp. 55-75, https://doi.org/10.1016/B978-0-12-823672-7.00003-X.

  26. Risher, W. C., Kim, N., Koh, S., Choi, J. E., Mitev, P., Spence, E. F., Pilaz, L. J., Wang, D., Feng, G., Silver, D. L., Soderling, S. H., Yin, H. H., and Eroglu, C. (2018) Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1, J. Cell. Biol., 217, 3747-3765, https://doi.org/10.1083/jcb.201802057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, J., Xiao, N., and Xia, J. (2010) Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1, Nat. Neurosci., 13, 22-24, https://doi.org/10.1038/nn.2459.

    Article  CAS  PubMed  Google Scholar 

  28. Stogsdill, J. A., Ramirez, J., Liu, D., Kim, Y. H., Baldwin, K. T., Enustun, E., Ejikeme, T., Ji, R. R., and Eroglu, C. (2017) Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis, Nature, 551, 192-197, https://doi.org/10.1038/nature24638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stogsdill, J. A., and Eroglu, C. (2017) The interplay between neurons and glia in synapse development and plasticity, Curr. Opin. Neurobiol., 42, 1-8, https://doi.org/10.1016/j.conb.2016.09.016.

    Article  CAS  PubMed  Google Scholar 

  30. Kucukdereli, H., Allen, N. J., Lee, A. T., Feng, A., Ozlu, M. I., Conatser, L. M., Chakraborty, C., Workman, G., Weaver, M., Sage, E. H., Barres, B. A., and Eroglu, C. (2011) Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC, Proc. Natl. Acad. Sci. USA, 108, E440-E449, https://doi.org/10.1073/pnas.1104977108.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jones, E. V., Bernardinelli, Y., Tse, Y. C., Chierzi, S., Wong, T. P., and Murai, K. K. (2011) Astrocytes control glutamate receptor levels at developing synapses through SPARC-beta-integrin interactions, J. Neurosci., 31, 4154-4165, https://doi.org/10.1523/JNEUROSCI.4757-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh, S. K., Stogsdill, J. A., Pulimood, N. S., Dingsdale, H., Kim, Y. H., Pilaz, L. J., Kim, I. H., Manhaes, A. C., Rodrigues, W. S. Jr., Pamukcu, A., Enustun, E., Ertuz, Z., Scheiffele, P., Soderling, S. H., Silver, D. L., Ji, R. R., Medina, A. E., and Eroglu, C. (2016) Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via Hevin, Cell, 164, 183-196, https://doi.org/10.1016/j.cell.2015.11.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gan, K. J., and Südhof, T. C. (2020) SPARCL1 promotes excitatory but not inhibitory synapse formation and function independent of neurexins and neuroligins, J. Neurosci., 40, 8088-8102, https://doi.org/10.1523/JNEUROSCI.0454-20.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allen, N. J., and Eroglu, C. (2017) Cell biology of astrocyte-synapse interactions, Neuron, 96, 697-708, https://doi.org/10.1016/j.neuron.2017.09.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allen, N. J., Bennett, M. L., Foo, L. C., Wang, G. X., Chakraborty, C., Smith, S. J., and Barres, B. A. (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors, Nature, 486, 410-414, https://doi.org/10.1038/nature11059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farhy-Tselnicker, I., van Casteren, A. C. M., Lee, A., Chang, V. T., Aricescu, A. R., and Allen, N. J. (2017) Astrocyte-secreted glypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation, Neuron, 96, 428-445, https://doi.org/10.1016/j.neuron.2017.09.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ko, J. S., Pramanik, G., Um, J. W., Shim, J. S., Lee, D., Kim, K. H., Chung, G. Y., Condomitti, G., Kim, H. M., Kim, H., de Wit, J., Park, K. S., Tabuchi, K., and Ko, J. (2015) PTPσ functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential for excitatory synaptic transmission, Proc. Natl. Acad. Sci. USA, 112, 1874-1879, https://doi.org/10.1073/pnas.1410138112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roppongi, R. T., Dhume, S. H., Padmanabhan, N., Silwal, P., Zahra, N., Karimi, B., Bomkamp, C., Patil, C. S., Champagne-Jorgensen, K., Twilley, R. E., Zhang, P., Jackson, M. F., and Siddiqui, T. J. (2020) LRRTMs organize synapses through differential engagement of neurexin and PTPσ, Neuron, 106, 108-125, https://doi.org/10.1016/j.neuron.2020.05.003.

    Article  CAS  PubMed  Google Scholar 

  39. Jean, Y. Y., Lercher, L. D., and Dreyfus, C. F. (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway, Neuron Glia Biol., 4, 35-42, https://doi.org/10.1017/S1740925X09000052.

    Article  PubMed  Google Scholar 

  40. De Pins, B., Cifuentes-Díaz, C., Farah, A. T., López-Molina, L., Montalban, E., Sancho-Balsells, A., López, A., Ginés, S., Delgado-García, J. M., Alberch, J., Gruart, A., Girault, J. A., and Giralt, A. (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer’s disease, J. Neurosci., 39, 2441-2458, https://doi.org/10.1523/JNEUROSCI.2121-18.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Diniz, L. P., Tortelli, V., Garcia, M. N., Araújo, A. P., Melo, H. M., Silva, G. S., Felice, F. G., Alves-Leon, S. V., Souza, J. M., Romão, L. F., Castro, N. G., and Gomes, F. C. (2014) Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling, Glia, 62, 1917-1931, https://doi.org/10.1002/glia.22713.

    Article  PubMed  Google Scholar 

  42. Diniz, L. P., Almeida, J. C., Tortelli, V., Vargas Lopes, C., Setti-Perdigão, P., Stipursky, J., Kahn, S. A., Romão, L. F., de Miranda, J., Alves-Leon, S. V., de Souza, J. M., Castro, N. G., Panizzutti, R., and Gomes, F. C. (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons, J. Biol. Chem., 287, 41432-41445, https://doi.org/10.1074/jbc.M112.380824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diniz, L. P., Matias, I. C., Garcia, M. N., and Gomes, F. C. (2014) Astrocytic control of neural circuit formation: highlights on TGF-beta signaling, Neurochem. Int., 78, 18-27, https://doi.org/10.1016/j.neuint.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  44. Patel, M. R., and Weaver, A. M. (2021) Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling, Cell. Rep., 34, 108829, https://doi.org/10.1016/j.celrep.2021.108829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blanco-Suarez, E., Liu, T. F., Kopelevich, A., and Allen, N. J. (2018) Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors, Neuron, 100, 1116-1132, https://doi.org/10.1016/j.neuron.2018.09.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garrett, A. M., and Weiner, J. A. (2009) Control of CNS synapse development by γ-protocadherin-mediated astrocyte-neuron contact, J. Neurosci., 29, 11723-11731, https://doi.org/10.1523/JNEUROSCI.2818-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miralles, C. P., Taylor, M. J., Bear, J. Jr., Fekete, C. D., George, S., Li, Y., Bonhomme, B., Chiou, T. T., and De Blas, A. L. (2020) Expression of protocadherin-γC4 protein in the rat brain, J. Comp. Neurol., 528, 840-864, https://doi.org/10.1002/cne.24783.

    Article  CAS  PubMed  Google Scholar 

  48. Molumby, M. J., Anderson, R. M., Newbold, D. J., Koblesky, N. K., Garrett, A. M., Schreiner, D., Radley, J. J., and Weiner, J. A. (2017) γ-Protocadherins interact with neuroligin-1 and negatively regulate dendritic spine morphogenesis, Cell. Rep., 18, 2702-2714, https://doi.org/10.1016/j.celrep.2017.02.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mauch, D. H., Nägler, K., Schumacher, S., Göritz, C., Müller, E. C., Otto, A., and Pfrieger, F. W. (2001) CNS synaptogenesis promoted by glia-derived cholesterol, Science, 294, 1354-1357, https://doi.org/10.1126/science.294.5545.1354.

    Article  CAS  PubMed  Google Scholar 

  50. Goritz, C., Mauch, D. H., and Pfrieger, F. W. (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron, Mol. Cell Neurosci., 29, 190-201, https://doi.org/10.1016/j.mcn.2005.02.006.

    Article  CAS  PubMed  Google Scholar 

  51. Goritz, C., Mauch, D. H., Nägler, K., and Pfrieger, F. W. (2002) Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse-glia affair, J. Physiol. Paris, 96, 257-263, https://doi.org/10.1016/s0928-4257(02)00014-1.

    Article  CAS  PubMed  Google Scholar 

  52. Pfrieger, F. W. (2003) Role of cholesterol in synapse formation and function, Biochim. Biophys. Acta, 1610, 271-280, https://doi.org/10.1126/science.277.5332.1684.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y., Fu, A. K. Y., and Ip, N. Y. (2022) Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms, FEBS J., 289, 2202-2218, https://doi.org/10.1111/febs.15878.

    Article  CAS  PubMed  Google Scholar 

  54. Van Deijk, A. F., Camargo, N., Timmerman, J., Heistek, T., Brouwers, J. F., Mogavero, F., Mansvelder, H. D., Smit, A. B., and Verheijen, M. H. (2017) Astrocyte lipid metabolism is critical for synapse development and function in vivo, Glia, 65, 670-682, https://doi.org/10.1002/glia.23120.

    Article  PubMed  Google Scholar 

  55. Ferris, H. A., Perry, R. J., Moreira, G. V., Shulman, G. I., Horton, J. D., and Kahn, C. R. (2017) Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism, Proc. Natl. Acad. Sci. USA, 114, 1189-1194, https://doi.org/10.1073/pnas.1620506114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ebrahimi, M., Yamamoto, Y., Sharifi, K., Kida, H., Kagawa, Y., Yasumoto, Y., Islam, A., Miyazaki, H., Shimamoto, C., Maekawa, M., Mitsushima, D., Yoshikawa, T., and Owada, Y. (2016) Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons, Glia, 64, 48-62, https://doi.org/10.1002/glia.22902.

    Article  PubMed  Google Scholar 

  57. Chiareli, R. A., Carvalho, G. A., Marques, B. L., Mota, L. S., Oliveira-Lima, O. C., Gomes, R. M., Birbrair, A., Gomez, R. S., Simão, F., Klempin, F., Leist, M., and Pinto, M. C. X. (2021) The role of astrocytes in the neurorepair process, Front. Cell. Dev. Biol., 9, 665795, https://doi.org/10.3389/fcell.2021.665795.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fossati, G., Pozzi, D., Canzi, A., Mirabella, F., Valentino, S., Morini, R., Ghirardini, E., Filipello, F., Moretti, M., Gotti, C., Annis, D. S., Mosher, D. F., Garlanda, C., Bottazzi, B., Taraboletti, G., Mantovani, A., Matteoli, M., and Menna, E. (2019) Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin, EMBO J., 38, e99529, https://doi.org/10.15252/embj.201899529.

    Article  CAS  PubMed  Google Scholar 

  59. Carmona, M. A., Murai, K. K., Wang, L., Roberts, A. J., and Pasquale, E. B. (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport, Proc. Natl. Acad. Sci. USA, 106, 12524-12529, https://doi.org/10.1073/pnas.0903328106.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Murai, K. K., and Pasquale, E. B. (2011) Eph receptors and ephrins in neuron-astrocyte communication at synapses, Glia, 59, 1567-1578, https://doi.org/10.1002/glia.21226.

    Article  PubMed  Google Scholar 

  61. Kania, A., and Klein, R. (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease, Nat. Rev. Mol. Cell Biol., 17, 240-256, https://doi.org/10.1038/nrm.2015.16.

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen, A. Q., Koeppen, J., Woodruff, S., Mina, K., Figueroa, Z., and Ethell, I. M. (2020) Astrocytic ephrin-b1 controls synapse formation in the hippocampus during learning and memory, Front. Synaptic Neurosci., 12, 10, https://doi.org/10.3389/fnsyn.2020.00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen, A. Q., Sutley, S., Koeppen, J., Mina, K., Woodruff, S., Hanna, S., Vengala, A., Hickmott, P. W., Obenaus, A., and Ethell, I. M. (2020) Astrocytic ephrin-B1 controls excitatory-inhibitory balance in developing hippocampus, J. Neurosci., 40, 6854-6871, https://doi.org/10.3389/fnsyn.2020.00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hung, C. Y., Hsu, T. I., Chuang, J. Y., Su, T. P., Chang, W. C., and Hung, J. J. (2020) Sp1 in astrocyte is important for neurite outgrowth and synaptogenesis, Mol. Neurobiol., 57, 261-277, https://doi.org/10.1007/s12035-019-01694-7.

    Article  CAS  PubMed  Google Scholar 

  65. Espírito-Santo, S., Coutinho, V. G., Dezonne, R. S., Stipursky, J., Dos Santos-Rodrigues, A., Batista, C., Paes-de-Carvalho, R., Fuss, B., and Gomes, F. C. A. (2021) Astrocytes as a target for Nogo-A and implications for synapse formation in vitro and in a model of acute demyelination, Glia, 69, 1429-1443, https://doi.org/10.1002/glia.23971.

    Article  CAS  PubMed  Google Scholar 

  66. Xie, Y., Kuan, A. T., Wang, W., Herbert, Z. T., Mosto, O., Olukoya, O., Adam, M., Vu, S., Kim, M., Tran, D., Gómez, N., Charpentier, C., Sorour, I., Lacey, T. E., Tolstorukov, M. Y., Sabatini, B. L., Lee, W. A., and Harwell, C. C. (2022) Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development, Cell. Rep., 38, 110416, https://doi.org/10.1016/j.celrep.2022.110416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zehnder, T., Petrelli, F., Romanos, J., De Oliveira Figueiredo, E. C., Lewis, T. L., Déglon, N., Polleux, F., Santello, M., and Bezzi, P. (2021) Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation, Cell. Rep., 35, 108952, https://doi.org/10.1016/j.celrep.2021.108952.

    Article  CAS  PubMed  Google Scholar 

  68. Risher, W. C., Patel, S., Kim, I. H., Uezu, A., Bhagat, S., Wilton, D. K., Pilaz, L. J., Singh Alvarado, J., Calhan, O. Y., Silver, D. L., Stevens, B., Calakos, N., Soderling, S. H., and Eroglu, C. (2014) Astrocytes refine cortical connectivity at dendritic spines, Elife, 3, e04047, https://doi.org/10.7554/eLife.04047.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hennes, M., Lombaert, N., Wahis, J., Van den Haute, C., Holt, M. G., and Arckens, L. (2020) Astrocytes shape the plastic response of adult cortical neurons to vision loss, Glia, 68, 2102-2118, https://doi.org/10.1002/glia.23830.

    Article  PubMed  Google Scholar 

  70. Lawal, O., Ulloa Severino, F. P., and Eroglu, C. (2022) The role of astrocyte structural plasticity in regulating neural circuit function and behavior, Glia, 70, 1467-1483, https://doi.org/10.1002/glia.24191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lyon, K. A., and Allen, N. J. (2022) From synapses to circuits, astrocytes regulate behavior, Front. Neural Circuits, 15, 786293, https://doi.org/10.3389/fncir.2021.786293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chicurel, M. E., Terrian, D. M., and Potter, H. (1993) mRNA at the synapse: analysis of a synaptosomal preparation enriched in hippocampal dendritic spines, J. Neurosci., 13, 4054-4063, https://doi.org/10.1523/JNEUROSCI.13-09-04054.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baldwin, K. T., and Eroglu, C. (2018) Astrocytes “chordinate” synapse maturation and plasticity, Neuron, 100, 1010-1012, https://doi.org/10.1016/j.neuron.2018.11.027.

    Article  CAS  PubMed  Google Scholar 

  74. Bosworth, A. P., and Allen, N. J. (2017) The diverse actions of astrocytes during synaptic development, Curr. Opin. Neurobiol., 47, 38-43, https://doi.org/10.1016/j.conb.2017.08.017.

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X., Ying, J., Wang, X., Zheng, Q., Zhao, T., Yoon, S., Yu, W., Yang, D., Fang, Y., and Hua, F. (2021) Astrocytes in neural circuits: key factors in synaptic regulation and potential targets for neurodevelopmental disorders, Front. Mol. Neurosci., 14, 729273, https://doi.org/10.3389/fnmol.2021.729273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sancho, L., Contreras, M., and Allen, N. J. (2021) Glia as sculptors of synaptic plasticity, Neurosci. Res., 167, 17-29, https://doi.org/10.1016/j.neures.2020.11.005.

    Article  CAS  PubMed  Google Scholar 

  77. Durkee, C., Kofuji, P., Navarrete, M., and Araque, A. (2021) Astrocyte and neuron cooperation in long-term depression, Trends Neurosci., 44, 837-848, https://doi.org/10.1016/j.tins.2021.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ota, Y., Zanetti, A. T., and Hallock, R. M. (2013) The role of astrocytes in the regulation of synaptic plasticity and memory formation, Neural Plast., 2013, 185463, https://doi.org/10.1155/2013/185463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Henneberger, C., Papouin, T., Oliet, S. H., and Rusakov, D. A. (2010) Long-term potentiation depends on release of D-serine from astrocytes, Nature, 463, 232-236, https://doi.org/10.1038/nature08673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adamsky, A., Kol, A., Kreisel, T., Doron, A., Ozeri-Engelhard, N., Melcer, T., Refaeli, R., Horn, H., Regev, L., Groysman, M., London, M., and Goshen, I. (2018) Astrocytic activation generates de novo neuronal potentiation and memory enhancement, Cell, 174, 59-71, https://doi.org/10.1016/j.cell.2018.05.002.

    Article  CAS  PubMed  Google Scholar 

  81. Masuoka, T., Ikeda, R., and Konishi, S. (2019) Persistent activation of histamine H1 receptors in the hippocampal CA1 region enhances NMDA receptor-mediated synaptic excitation and long-term potentiation in astrocyte- and D-serine-dependent manner, Neuropharmacology, 151, 64-73, https://doi.org/10.1016/j.neuropharm.2019.03.036.

    Article  CAS  PubMed  Google Scholar 

  82. Cavaccini, A., Durkee, C., Kofuji, P., Tonini, R., and Araque, A. (2020) Astrocyte signaling gates long-term depression at corticostriatal synapses of the direct pathway, J. Neurosci., 40, 5757-5768, https://doi.org/10.1523/JNEUROSCI.2369-19.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Falcón-Moya, R., Pérez-Rodríguez, M., Prius-Mengual, J., Andrade-Talavera, Y., Arroyo-García, L. E., Pérez-Artés, R., Mateos-Aparicio, P., Guerra-Gomes, S., Oliveira, J. F., Flores, G., and Rodríguez-Moreno, A. (2020) Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development, Nat. Commun., 11, 4388, https://doi.org/10.1038/s41467-020-18024-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, C. J., Mannaioni, G., Yuan, H., Woo, D. H., Gingrich, M. B., and Traynelis, S. F. (2007) Astrocytic control of synaptic NMDA receptors, J. Physiol., 581, 1057-1081, https://doi.org/10.1113/jphysiol.2007.130377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, H., Han, K. S., Seo, J., Lee, J., Dravid, S. M., Woo, J., Chun, H., Cho, S., Bae, J. Y., An, H., Koh, W., Yoon, B. E., Berlinguer-Palmini, R., Mannaioni, G., Traynelis, S. F., Bae, Y. C., Choi, S. Y., and Lee, C. J. (2015) Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors, Mol. Brain, 8, 7, https://doi.org/10.1186/s13041-015-0097-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Navarrete, M., Cuartero, M. I., Palenzuela, R., Draffin, J. E., Konomi, A., Serra, I., Colié, S., Castaño-Castaño, S., Hasan, M. T., Nebreda, Á. R., and Esteban, J. A. (2019) Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory, Nat. Commun., 10, 2968, https://doi.org/10.1038/s41467-019-10830.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Boué-Grabot, E., and Pankratov, Y. (2017) Modulation of central synapses by astrocyte-released ATP and postsynaptic P2X receptors, Neural Plast., 2017, 9454275, https://doi.org/10.1155/2017/9454275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crosby, K. M., Murphy-Royal, C., Wilson, S. A., Gordon, G. R., Bains, J. S., and Pittman, Q. J. (2018) Cholecystokinin switches the plasticity of GABA synapses in the dorsomedial hypothalamus via astrocytic ATP release, J. Neurosci., 38, 8515-8525, https://doi.org/10.1523/JNEUROSCI.0569-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Covelo, A., Eraso-Pichot, A., Fernández-Moncada, I., Serrat, R., and Marsicano, G. (2021) CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions, Neuropharmacology, 195, 108678, https://doi.org/10.1016/j.neuropharm.2021.108678.

    Article  CAS  PubMed  Google Scholar 

  90. Martin-Fernandez, M., Jamison, S., Robin, L. M., Zhao, Z., Martin, E. D., Aguilar, J., Benneyworth, M. A., Marsicano, G., and Araque, A. (2017) Synapse-specific astrocyte gating of amygdala-related behavior, Nat. Neurosci., 20, 1540-1548, https://doi.org/10.1038/nn.4649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Robin, L. M., Oliveira da Cruz, J. F., Langlais, V. C., Martin-Fernandez, M., Metna-Laurent, M., Busquets-Garcia, A., Bellocchio, L., Soria-Gomez, E., Papouin, T., Varilh, M., Sherwood, M. W., Belluomo, I., Balcells, G., Matias, I., Bosier, B., Drago, F., Van Eeckhaut, A., Smolders, I., Georges, F., Araque, A., Panatier, A., Oliet, S. H. R., and Marsicano, G. (2018) Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory, Neuron, 98, 935-944, https://doi.org/10.1016/j.neuron.2018.04.034.

    Article  CAS  PubMed  Google Scholar 

  92. Durieux, L. J. A., Gilissen, S. R. J., and Arckens, L. (2022) Endocannabinoids and cortical plasticity: CB1R as a possible regulator of the excitation/inhibition balance in health and disease, Eur. J. Neurosci., 55, 971-988, https://doi.org/10.1111/ejn.15110.

    Article  CAS  PubMed  Google Scholar 

  93. Balschun, D., Wetzel, W., Del Rey, A., Pitossi, F., Schneider, H., Zuschratter, W., and Besedovsky, H. O. (2004) Interleukin-6: a cytokine to forget, FASEB J., 18, 1788-1790, https://doi.org/10.1096/fj.04-1625fje.

    Article  CAS  PubMed  Google Scholar 

  94. Quintana, A., Erta, M., Ferrer, B., Comes, G., Giralt, M., and Hidalgo, J. (2013) Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior, Brain Behav. Immun., 27, 162-173, https://doi.org/10.1016/j.bbi.2012.10.011.

    Article  CAS  PubMed  Google Scholar 

  95. Roberts, A. J., Khom, S., Bajo, M., Vlkolinsky, R., Polis, I., Cates-Gatto, C., Roberto, M., and Gruol, D. L. (2019) Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal, Brain Behav. Immun., 82, 188-202, https://doi.org/10.1016/j.bbi.2019.08.185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alberini, C. M., Cruz, E., Descalzi, G., Bessières, B., and Gao, V. (2018) Astrocyte glycogen and lactate: new insights into learning and memory mechanisms, Glia, 66, 1244-1262, https://doi.org/10.1002/glia.23250.

    Article  PubMed  Google Scholar 

  97. Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., and Alberini, C. M. (2011) Astrocyte-neuron lactate transport is required for long-term memory formation, Cell, 144, 810-823, https://doi.org/10.1016/j.cell.2011.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Descalzi, G., Gao, V., Steinman, M. Q., Suzuki, A., and Alberini, C. M. (2019) Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons, Commun. Biol., 2, 247, https://doi.org/10.1038/s42003-019-0495-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duran, J., Brewer, M. K., Hervera, A., Gruart, A., Del Rio, J. A., Delgado-García, J. M., and Guinovart, J. J. (2020) Lack of astrocytic glycogen alters synaptic plasticity but not seizure susceptibility, Mol. Neurobiol., 57, 4657-4666, https://doi.org/10.1007/s12035-020-02055-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vezzoli, E., Calì, C., De Roo, M., Ponzoni, L., Sogne, E., Gagnon, N., Francolini, M., Braida, D., Sala, M., Muller, D., Falqui, A., and Magistretti, P. J. (2020) Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization, Cereb. Cortex, 30, 2114-2127, https://doi.org/10.1093/cercor/bhz226.

    Article  CAS  PubMed  Google Scholar 

  101. Takano, T., Wallace, J. T., Baldwin, K. T., Purkey, A. M., Uezu, A., Courtland, J. L., Soderblom, E. J., Shimogori, T., Maness, P. F., Eroglu, C., and Soderling, S. H. (2020) Chemico-genetic discovery of astrocytic control of inhibition in vivo, Nature, 588, 296-302, https://doi.org/10.1038/s41586-020-2926-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. G. Khaspekov conceived and wrote the manuscript, collected and analyzed the data; L. E. Frumkina wrote the manuscript, collected and analyzed the data, and prepared the figures.

Corresponding author

Correspondence to Leonid G. Khaspekov.

Ethics declarations

The authors declare no conflict of interests. No description of studies involving human subjects or animals performed by any of the authors is provided in the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaspekov, L.G., Frumkina, L.E. Molecular Mechanisms of Astrocyte Involvement in Synaptogenesis and Brain Synaptic Plasticity. Biochemistry Moscow 88, 502–514 (2023). https://doi.org/10.1134/S0006297923040065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923040065

Keywords

Navigation