Skip to main content
Log in

Astrocyte Activation Markers

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AQP4:

aquaporin 4

CaM:

calmodulin

ChR2:

channelrhodopsin-2

Cx:

connexin

EGFP:

enhanced green fluorescent protein

GFP:

green fluorescent protein

GFAP:

glial fibrillar acidic protein

GS:

glutamine synthetase

NDRG2 :

N-myc downstream-regulated gene 2

References

  1. Montgomery, D. L. (1994) Astrocytes: form, functions, and roles in disease, Vet. Pathol., 31, 145-167, https://doi.org/10.1177/030098589403100201.

    Article  CAS  PubMed  Google Scholar 

  2. Montana, V., Flint, D., Waagepetersen, H. S., Schousboe, A., and Parpura, V. (2021) Two metabolic fuels, glucose and lactate, differentially modulate exocytotic glutamate release from cultured astrocytes, Neurochem. Res., 46, 2551-2579, https://doi.org/10.1007/s11064-021-03340-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar, R., Huang, Y.-T., Chen, C.-C., Tzeng, S.-F., and Chan, C.-K. (2020) Astrocytic regulation of synchronous bursting in cortical cultures: from local to global, Cerebral Cortex Commun., 1, tgaa053, https://doi.org/10.1093/texcom/tgaa053.

    Article  Google Scholar 

  4. Honoré, E., Khlaifia, A., Bosson, A., and Lacaille, J.-C. (2021) Hippocampal somatostatin interneurons, long-term synaptic plasticity and memory, Front. Neural. Circuits, 15, 687558, https://doi.org/10.3389/fncir.2021.687558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welser-Alves, J. V., Crocker, S. J., and Milner, R. (2011) A dual role for microglia in promoting tissue inhibitor of metalloproteinase (TIMP) expression in glial cells in response to neuroinflammatory stimuli, J. Neuroinflamm., 8, 61, https://doi.org/10.1186/1742-2094-8-61.

    Article  CAS  Google Scholar 

  6. Stackhouse, T. L., and Mishra, A. (2021) Neurovascular coupling in development and disease: focus on astrocytes, Front. Cell Dev. Biol., 9, 702832, https://doi.org/10.3389/fcell.2021.702832.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Santello, M., Toni, N., and Volterra, A. (2019) Astrocyte function from information processing to cognition and cognitive impairment, Nat. Neurosci., 22, 154-166, https://doi.org/10.1038/s41593-018-0325-8.

    Article  CAS  PubMed  Google Scholar 

  8. McNeill, J., Rudyk, C., Hildebrand, M. E., and Salmaso, N. (2021) Ion channels and electrophysiological properties of astrocytes: implications for emergent stimulation technologies, Front. Cell. Neurosci., 15, 644126, https://doi.org/10.3389/fncel.2021.644126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gómez-Gonzalo, M., Zehnder, T., Requie, L. M., Bezz, I. P., and Carmignoto, G. (2018) Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents, Glia, 66, 2188-2199, https://doi.org/10.1002/glia.23473.

    Article  PubMed  Google Scholar 

  10. Robin, L. M., Oliveira da Cruz, J. F., Langlais, V. C., Martin-Fernandez, M., Metna-Laurent, M., et al. (2018) Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory, Neuron, 98, 935-944, https://doi.org/10.1016/j.neuron.2018.04.034.

    Article  CAS  PubMed  Google Scholar 

  11. Sardar, D., Lozzi, B., Woo, J., Huang, T.-W., Cvetkovic, C., et al. (2021) Mapping astrocyte transcriptional signatures in response to neuroactive compounds, Int. J. Mol. Sci., 22, 3975, https://doi.org/10.3390/ijms22083975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gómez-Gonzalo, M., Martin-Fernandez, M., Martínez-Murillo, R., Mederos, S., Hernández-Vivanco, A., et al. (2017) Neuron-astrocyte signaling is preserved in the aging brain: neuron-astrocyte signaling in aging brain, Glia, 65, 569-580, https://doi.org/10.1002/glia.23112.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verkhratsky, A., and Nedergaard, M. (2018) Physiology of astroglia, Physiol. Rev., 98, 239-389, https://doi.org/10.1152/physrev.00042.2016.

    Article  CAS  PubMed  Google Scholar 

  14. Middeldorp, J., and Hol, E. M. (2011) GFAP in health and disease, Progr. Neurobiol., 93, 421-443, https://doi.org/10.1016/j.pneurobio.2011.01.005.

    Article  CAS  Google Scholar 

  15. Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A., and Finch, C. E. (1993) GFAP mRNA increases with age in rat and human brain, Neurobiol. Aging, 14, 421-429, https://doi.org/10.1016/0197-4580(93)90100-P.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia, A. D. R., Doan, N. B., Imura, T., Bush, T. G., and Sofroniew, M. V. (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain, Nat. Neurosci., 7, 1233-1241, https://doi.org/10.1038/nn1340.

    Article  CAS  PubMed  Google Scholar 

  17. Steiner, J., Bernstein, H.-G., Bogerts, B., Gos, T., Richter-Landsberg, C., et al. (2008) S100β is expressed in, and released from, OLN-93 oligodendrocytes: influence of serum and glucose deprivation, Neuroscience, 154, 496-503, https://doi.org/10.1016/j.neuroscience.2008.03.060.

    Article  CAS  PubMed  Google Scholar 

  18. Steiner, J., Bernstein, H.-G., Bielau, H., Berndt, A., Brisch, R., et al. (2007) Evidence for a wide extra-astrocytic distribution of S100β in human brain, BMC Neurosci., 8, 2, https://doi.org/10.1186/1471-2202-8-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marichal, N., García, G., Radmilovich, M., Trujillo‐Cenóz, O., and Russo, R. E. (2012) Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord, Stem Cells, 30, 2020-2031, https://doi.org/10.1002/stem.1175.

    Article  PubMed  Google Scholar 

  20. Schmitt, A., Asan, E., Lesch, K.-P., and Kugler, P. (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system, Neuroscience, 109, 45-61, https://doi.org/10.1016/S0306-4522(01)00451-1.

    Article  CAS  PubMed  Google Scholar 

  21. Lehre, K., Levy, L., Ottersen, O., Storm-Mathisen, J., and Danbolt, N. (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations, J. Neurosci., 15, 1835-1853, https://doi.org/10.1523/JNEUROSCI.15-03-01835.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anlauf, E., and Derouiche, A. (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization, Front. Endocrinol., 4, 144, https://doi.org/10.3389/fendo.2013.00144.

    Article  Google Scholar 

  23. Bernstein, H.-G., Bannier, J., Meyer-Lotz, G., Steiner, J., Keilhoff, G., et al. (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization, J. Chem. Neuroanatomy, 61-62, 33-50, https://doi.org/10.1016/j.jchemneu.2014.07.003.

    Article  CAS  Google Scholar 

  24. Morrow, C. S., Porter, T. J., Xu, N., Arndt, Z. P., Ako-Asare, K., et al. (2020) Vimentin coordinates protein turnover at the aggresome during neural stem Cell quiescence exit, Cell Stem Cell, 26, 558-568, https://doi.org/10.1016/j.stem.2020.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Battaglia, R. A., Delic, S., Herrmann, H., and Snider, N. T. (2018) Vimentin on the move: new developments in cell migration, F1000Res., 7, 1796, https://doi.org/10.12688/f1000research.15967.1.

    Article  CAS  Google Scholar 

  26. Pattabiraman, S., Azad, G. K., Amen, T., Brielle, S., Park, J. E., et al. (2020) Vimentin protects differentiating stem cells from stress, Sci. Rep., 10, 19525, https://doi.org/10.1038/s41598-020-76076-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lisjak, M., Potokar, M., Zorec, R., and Jorgačevski, J. (2020) Indirect role of AQP4b and AQP4d isoforms in dynamics of astrocyte volume and orthogonal arrays of particles, Cells, 9, 735, https://doi.org/10.3390/cells9030735.

    Article  CAS  PubMed Central  Google Scholar 

  28. Wen, H., Nagelhus, E. A., Amiry-Moghaddam, M., Agre, P., Ottersen, O. P., et al. (1999) Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel: Aquaporin-4 and brain development, Eur. J. Neurosci., 11, 935-945, https://doi.org/10.1046/j.1460-9568.1999.00502.x.

    Article  CAS  PubMed  Google Scholar 

  29. Giaume, C., Naus, C. C., Sáez, J. C., and Leybaert, L. (2021) Glial connexins and pannexins in the healthy and diseased brain, Physiol. Rev., 101, 93-145, https://doi.org/10.1152/physrev.00043.2018.

    Article  CAS  PubMed  Google Scholar 

  30. Griemsmann, S., Höft, S. P., Bedner, P., Zhang, J., von Staden, E., et al. (2015) Characterization of Panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells, Cereb. Cortex, 25, 3420-3433, https://doi.org/10.1093/cercor/bhu157.

    Article  PubMed  Google Scholar 

  31. Krupenko, S. A. (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism, Chem. Biol. Interact., 178, 84-93, https://doi.org/10.1016/j.cbi.2008.09.007.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Y., Vidensky, S., Jin, L., Jie, C., Lorenzini, I., et al. (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice, Glia, 59, 200-207, https://doi.org/10.1002/glia.21089.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., et al. (2008) A Transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function, J. Neurosci., 28, 264-278, https://doi.org/10.1523/JNEUROSCI.4178-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shiokawa, K., Kajita, E., Hara, H., Yatsuki, H., and Hori, K. (2002) A developmental biological study of aldolase gene expression in Xenopus laevis, Cell Res., 12, 85-96, https://doi.org/10.1038/sj.cr.7290114.

    Article  PubMed  Google Scholar 

  35. Walther, E. U., Dichgans, M., Maricich, S. M., Romito, R. R., Yang, F., et al. (1998) Genomic sequences of aldolase C (Zebrin II) direct lacZ expression exclusively in non-neuronal cells of transgenic mice, Proc. Natl. Acad. Sci. USA, 95, 2615-2620, https://doi.org/10.1073/pnas.95.5.2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson, R. J., Kynoch, P. A. M., and Willson, V. J. C. (1982) Cellular localization of aldolase C subunits in human brain, Brain Res., 232, 489-493, https://doi.org/10.1016/0006-8993(82)90294-3.

    Article  CAS  PubMed  Google Scholar 

  37. Sun, W., Cornwell, A., Li, J., Peng, S., Osorio, M. J., et al. (2017) SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions, J Neurosci., 37, 4493-4507, https://doi.org/10.1523/JNEUROSCI.3199-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neyrinck, K., Van Den Daele, J., Vervliet, T., De Smedt, J., Wierda, K., et al. (2021) SOX9-induced generation of functional astrocytes supporting neuronal maturation in an all-human system, Stem Cell Rev. Rep., 17, 1855-1873, https://doi.org/10.1007/s12015-021-10179-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moretto, G., Xu, R. Y., and Kim, S. U. (1993) CD44 expression in human astrocytes and oligodendrocytes in culture, J. Neuropathol. Exp. Neurol., 52, 419-423, https://doi.org/10.1097/00005072-199307000-00009.

    Article  CAS  PubMed  Google Scholar 

  40. Dzwonek, J., and Wilczynski, G. M. (2015) CD44: molecular interactions, signaling and functions in the nervous system, Front. Cell. Neurosci., 9, 175, https://doi.org/10.3389/fncel.2015.00175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naruse, M., Shibasaki, K., Yokoyama, S., Kurachi, M., and Ishizaki, Y. (2013) Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum, PLoS One, 8, e53109, https://doi.org/10.1371/journal.pone.0053109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen, L., Zhao, Z.-Y., Wang, Y.-Z., Ji, S.-P., Liu, X.-P., et al. (2008) Immunohistochemical detection of Ndrg2 in the mouse nervous system, NeuroReport., 19, 927-931, https://doi.org/10.1097/WNR.0b013e32830163d0.

    Article  CAS  PubMed  Google Scholar 

  43. Tao, L., Zhu, Y., Wang, R., Han, J., Ma, Y., et al. (2020) N-myc downstream-regulated gene 2 deficiency aggravates memory impairment in Alzheimer’s disease, Behavioural Brain Res., 379, 112384, https://doi.org/10.1016/j.bbr.2019.112384.

    Article  CAS  Google Scholar 

  44. Pekny, M., Eliasson, C., Chien, C.-L., Kindblom, L. G., Liem, R., et al. (1998) GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density, Exp. Cell Res., 239, 332-343, https://doi.org/10.1006/excr.1997.3922.

    Article  CAS  PubMed  Google Scholar 

  45. Bushong, E. A., Martone, M. E., Jones, Y. Z., and Ellisman, M. H. (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J. Neurosci., 22, 183-192, https://doi.org/10.1523/JNEUROSCI.22-01-00183.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Den Berge, S. A., Middeldorp, J., Zhang, C. E., Curtis, M. A., Leonard, B. W., et al. (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-δ: GFAP-δ in aged human SVZ stem cells, Aging Cell, 9, 313-326, https://doi.org/10.1111/j.1474-9726.2010.00556.x.

    Article  CAS  PubMed  Google Scholar 

  47. Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., et al. (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science, 347, 1138-1142, https://doi.org/10.1126/science.aaa1934.

    Article  CAS  PubMed  Google Scholar 

  48. Hu, J., and Van Eldik, L. J. (1996) S100 β induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway, Biochim. Biophys. Acta Mol. Cell Res., 1313, 239-245, https://doi.org/10.1016/0167-4889(96)00095-X.

    Article  Google Scholar 

  49. Xiong, Z., O’Hanlon, D., Becker, L. E., Roder, J., MacDonald, J. F., et al. (2000) Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100β null mice, Exp. Cell Res., 257, 281-289, https://doi.org/10.1006/excr.2000.4902.

    Article  CAS  PubMed  Google Scholar 

  50. Bianchi, R., Verzini, M., Garbuglia, M., Giambanco, I., and Donato, R. (1994) Mechanism of S100 protein-dependent inhibition of glial fibrillary acidic protein (GFAP) polymerization, Biochim. Biophys. Acta Mol. Cell Res., 1223, 354-360, https://doi.org/10.1016/0167-4889(94)90095-7.

    Article  CAS  Google Scholar 

  51. Villarreal, A., Seoane, R., González Torres, A., Rosciszewski, G., Angelo, M. F., et al. (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis, J. Neurochem., 131, 190-205, https://doi.org/10.1111/jnc.12790.

    Article  CAS  PubMed  Google Scholar 

  52. Nishiyama, H., Knöpfel, T., Endo, S., and Itohara, S. (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity, Proc. Natl. Acad. Sci. USA, 99, 4037-4042, https://doi.org/10.1073/pnas.052020999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heizmann, C. W. (2019) S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine, Biochim. Biophys. Acta Mol. Cell Res., 1866, 1197-1206, https://doi.org/10.1016/j.bbamcr.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  54. Ogata, K., and Kosaka, T. (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus, Neuroscience, 113, 221-233, https://doi.org/10.1016/S0306-4522(02)00041-6.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Z., Ma, Z., Zou, W., Guo, H., Liu, M., et al. (2019) The appropriate marker for astrocytes: comparing the distribution and expression of three astrocytic markers in different mouse cerebral regions, Biomed. Res. Int., 2019, 9605265, https://doi.org/10.1155/2019/9605265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hachem, S., Aguirre, A., Vives, V., Marks, A., Gallo, V., et al. (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage, Glia, 51, 81-97, https://doi.org/10.1002/glia.20184.

    Article  CAS  PubMed  Google Scholar 

  57. Savchenko, V. L., McKanna, J. A., Nikonenko, I. R., and Skibo, G. G. (2000) Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity, Neuroscience, 96, 195-203, https://doi.org/10.1016/S0306-4522(99)00538-2.

    Article  CAS  PubMed  Google Scholar 

  58. Rickmann, M., and Wolff, J. R. (1995) S100 protein expression in subpopulations of neurons of rat brain, Neuroscience, 67, 977-991, https://doi.org/10.1016/0306-4522(94)00615-C.

    Article  CAS  PubMed  Google Scholar 

  59. Zimmer, D. B., Chaplin, J., Baldwin, A., and Rast, M. (2005) S100‐mediated signal transduction in the nervous system and neurological diseases, Cell Mol. Biol., 51, 201-214.

    CAS  PubMed  Google Scholar 

  60. Milosevic, A., Liebmann, T., Knudsen, M., Schintu, N., Svenningsson, P., et al. (2017) Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain, J. Comp. Neurol., 525, 955-975, https://doi.org/10.1002/cne.24113.

    Article  CAS  PubMed  Google Scholar 

  61. Zamanian, J. L., Xu, L., Foo, L. C., Nouri, N., Zhou, L., et al. (2012) Genomic analysis of reactive astrogliosis, J. Neurosci., 32, 6391-6410, https://doi.org/10.1523/JNEUROSCI.6221-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Furuta, A., Rothstein, J. D., and Martin, L. J. (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development, J. Neurosci., 17, 8363-8375, https://doi.org/10.1523/JNEUROSCI.17-21-08363.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walz, W., and Lang, M. K. (1998) Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus, Neurosci. Lett., 257, 127-130, https://doi.org/10.1016/S0304-3940(98)00813-1.

    Article  CAS  PubMed  Google Scholar 

  64. Yeh, C.-Y., Verkhratsky, A., Terzieva, S., and Rodríguez, J. J. (2013) Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer’s disease is not affected by pathological progression, Biogerontology, 14, 777-787, https://doi.org/10.1007/s10522-013-9456-1.

    Article  CAS  PubMed  Google Scholar 

  65. Norenberg, M. D., and Martinez-Hernandez, A. (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain, Brain Res., 161, 303-310, https://doi.org/10.1016/0006-8993(79)90071-4.

    Article  CAS  PubMed  Google Scholar 

  66. Sancho-Tello, M., Vallés, S., Montoliu, C., Renau-Piqueras, J., and Guerri, C. (1995) Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures, Glia, 15, 157-166, https://doi.org/10.1002/glia.440150208.

    Article  CAS  PubMed  Google Scholar 

  67. Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Wallén, Å., et al. (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin, J. Cell Biol., 145, 503-514, https://doi.org/10.1083/jcb.145.3.503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabbiani, G., Schmid, E., Winter, S., Chaponnier, C., de Ckhastonay, C., et al. (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin, Proc. Natl. Acad. Sci. USA, 78, 298-302, https://doi.org/10.1073/pnas.78.1.298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nagelhus, E. A., Veruki, M. L., Torp, R., Haug, F.-M., Laake, J. H., et al. (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in müller cells and fibrous astrocytes, J. Neurosci., 18, 2506-2519, https://doi.org/10.1523/JNEUROSCI.18-07-02506.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nagy, J. I., Patel, D., Ochalski, P. A. Y., and Stelmack, G. L. (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance, Neuroscience, 88, 447-468, https://doi.org/10.1016/S0306-4522(98)00191-2.

    Article  CAS  PubMed  Google Scholar 

  71. Theis, M., and Giaume, C. (2012) Connexin-based intercellular communication and astrocyte heterogeneity, Brain Res., 1487, 88-98, https://doi.org/10.1016/j.brainres.2012.06.045.

    Article  CAS  PubMed  Google Scholar 

  72. Neymeyer, V., Tephly, T. R., and Miller, M. W. (1997) Folate and 10-formyltetrahydrofolate dehydrogenase (FDH) expression in the central nervous system of the mature rat, Brain Res., 766, 195-204, https://doi.org/10.1016/S0006-8993(97)00528-3.

    Article  CAS  PubMed  Google Scholar 

  73. Anthony, T. E., and Heintz, N. (2007) The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects, J. Comp. Neurol., 500, 368-383, https://doi.org/10.1002/cne.21179.

    Article  CAS  PubMed  Google Scholar 

  74. Waller, R., Woodroofe, M. N., Wharton, S. B., Ince, P. G., Francese, S., et al. (2016) Gene expression profiling of the astrocyte transcriptome in multiple sclerosis normal appearing white matter reveals a neuroprotective role, J. Neuroimmunol., 299, 139-146, https://doi.org/10.1016/j.jneuroim.2016.09.010.

    Article  CAS  PubMed  Google Scholar 

  75. Sosunov, A. A., Wu, X., Tsankova, N. M., Guilfoyle, E., McKhann, G. M., et al. (2014) Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain, J. Neurosci., 34, 2285-2298, https://doi.org/10.1523/JNEUROSCI.4037-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nichols, N. R. (2003) Ndrg2, a novel gene regulated by adrenal steroids and antidepressants, is highly expressed in astrocytes, Ann. NY Acad. Sci., 1007, 349-356, https://doi.org/10.1196/annals.1286.034.

    Article  CAS  PubMed  Google Scholar 

  77. Docampo-Seara, A., Santos-Durán, G. N., Candal, E., Ángel, M., and Díaz, R. (2019) Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula), Brain Struct. Funct., 224, 33-56, https://doi.org/10.1007/s00429-018-1758-2.

    Article  CAS  PubMed  Google Scholar 

  78. Shibata, T., Yamada, K., Watanabe, M., Ikenaka, K., Wada, K., et al. (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord, J. Neurosci., 17, 92129-219, https://doi.org/10.1523/JNEUROSCI.17-23-09212.1997.

    Article  Google Scholar 

  79. Belozor, O. S., Yakovleva, D. A., Potapenko, I. V., Shuvaev, A. N., Smolnikova, M. V., et al. (2019) Extracellular S100 disrupts Bergman glia morphology and synaptic transmission in cerebellar Purkinje cells, Brain Sci., 9, 80, https://doi.org/10.3390/brainsci9040080.

    Article  CAS  PubMed Central  Google Scholar 

  80. Miyazaki, T., Yamasaki, M., Hashimoto, K., Kohda, K., Yuzaki, M., et al. (2017) Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells, Proc. Natl. Acad. Sci. USA, 114, 7438-7443, https://doi.org/10.1073/pnas.1617330114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tiburcio-Félix, R., Escalante-López, M., López-Bayghen, B., Martínez, D., Hernández-Kelly, L. C., et al. (2018) Glutamate-dependent translational control of glutamine synthetase in bergmann glia cells, Mol. Neurobiol., 55, 5202-5209, https://doi.org/10.1007/s12035-017-0756-3.

    Article  CAS  PubMed  Google Scholar 

  82. Kommata, V., and Dermon, C. R. (2018) Transient vimentin expression during the embryonic development of the chicken cerebellum, Int. J. Dev. Neurosci., 65, 11-20, https://doi.org/10.1016/j.ijdevneu.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  83. Pow, D. V., and Barnett, N. L. (1999) Changing patterns of spatial buffering of glutamate in developing rat retinae are mediated by the Müller cell glutamate transporter GLAST, Cell Tissue Res., 297, 57-66, https://doi.org/10.1007/s004410051333.

    Article  CAS  PubMed  Google Scholar 

  84. Yu, J., Zhong, Y., Cheng, Y., Shen, X., Wang, J., et al. (2011) Effect of high hydrostatic pressure on the expression of glutamine synthetase in rat retinal Müller cells cultured in vitro, Exp. Ther. Med., 2, 513-516, https://doi.org/10.3892/etm.2011.239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Voulgaris, D., Nikolakopoulou, P., and Herland, A. (2022) Generation of human iPSC-derived astrocytes with a mature star-shaped phenotype for CNS modeling, Stem Cell Rev. Rep., https://doi.org/10.1007/s12015-022-10376-2.

    Article  PubMed  Google Scholar 

  86. Verkhratsky, A., Marutle, A., Rodríguez-Arellano, J. J., and Nordberg, A. (2015) Glial asthenia and functional paralysis: a new perspective on neurodegeneration and Alzheimer’s disease, Neuroscientist, 21, 552-568, https://doi.org/10.1177/1073858414547132.

    Article  CAS  PubMed  Google Scholar 

  87. Choi, S. R., Roh, D. H., Yoon, S. Y., Kwon, S. G., Choi, H. S., et al. (2016) Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice, Neuropharmacology, 111, 34-46, https://doi.org/10.1016/j.neuropharm.2016.08.027.

    Article  CAS  PubMed  Google Scholar 

  88. Çavdar, S., Köse, B., Sur-Erdem, İ., and Özkan, M. (2021) Comparing astrocytic gap junction of genetic absence epileptic rats with control rats: an experimental study, Brain Struct. Funct., 226, 2113-2123, https://doi.org/10.1007/s00429-021-02310-y.

    Article  CAS  PubMed  Google Scholar 

  89. Sandoval, M., Luarte, A., Herrera-Molina, R., Varas-Godoy, M., Santibáñez, M., et al. (2013) The glycolytic enzyme aldolase C is up-regulated in rat forebrain microsomes and in the cerebrospinal fluid after repetitive fluoxetine treatment, Brain Res., 1520, 1-14, https://doi.org/10.1016/j.brainres.2013.04.049.

    Article  CAS  PubMed  Google Scholar 

  90. Flügge, G., Araya-Callis, C., Garea-Rodriguez, E., Stadelmann-Nessler, C., and Fuchs, E. (2014) NDRG2 as a marker protein for brain astrocytes, Cell Tissue Res., 357, 31-41, https://doi.org/10.1007/s00441-014-1837-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Desilva, T. M., Billiards, S. S., Borenstein, N. S., Trachtenberg, F. L., Volpe, J. J., et al. (2008) Glutamate transporter EAAT2 expression is up-regulated in reactive astrocytes in human periventricular leukomalacia, J. Comp. Neurol., 508, 238-248, https://doi.org/10.1002/cne.21667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xin, W., Mironova, Y. A., Shen, H., Marino, R. A. M., Waisman, A., et al. (2019) Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase, Cell Rep., 27, 2262-2271.e5, https://doi.org/10.1016/j.celrep.2019.04.094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Winchenbach, J., Düking, T., Berghoff, S. A., Stumpf, S. K., Hülsmann, S., et al. (2016) Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice, F1000Res., 5, 2934, https://doi.org/10.12688/f1000research.10509.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tuohy, T. M. F., Wallingford, N., Liu, Y., Chan, F. H., Rizvi, T., et al. (2004) CD44 overexpression by oligodendrocytes: a novel mouse model of inflammation-independent demyelination and dysmyelination, Glia, 47, 335-345, https://doi.org/10.1002/glia.20042.

    Article  PubMed  Google Scholar 

  95. Porlan, E., Martí-Prado, B., Morante-Redolat, J. M., Consiglio, A., Delgado, A. C., et al. (2014) MT5-MMP regulates adult neural stem cell functional quiescence through the cleavage of N-cadherin, Nat. Cell. Biol., 16, 629-638, https://doi.org/10.1038/ncb2993.

    Article  CAS  PubMed  Google Scholar 

  96. Akanuma, S., Sakurai, T., Tachikawa, M., Kubo, Y., and Hosoya, K. (2015) Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells, Fluids Barriers CNS, 12, 11, https://doi.org/10.1186/s12987-015-0006-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Trillo-Contreras, J. L., Toledo-Aral, J. J., Echevarría, M., and Villadiego, J. (2019) AQP1 and AQP4 contribution to cerebrospinal fluid homeostasis, Cells, 8, 197, https://doi.org/10.3390/cells8020197.

    Article  CAS  PubMed Central  Google Scholar 

  98. Ren, Y., Ao, Y., O’Shea, T. M., Burda, J. E., Bernstein, A. M., et al. (2017) Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury, Sci. Rep., 7, 41122, https://doi.org/10.1038/srep41122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Garaschuk, O., Milos, R. I., and Konnerth, A. (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo, Nat. Protoc., 1, 380-386, https://doi.org/10.1038/nprot.2006.58.

    Article  CAS  PubMed  Google Scholar 

  100. Hideharu, H., and Haruo, M. (1994) Fluorescence imaging of intracellular Ca2+, J. Pharmacol. Toxicol. Methods, 31, 1-10, https://doi.org/10.1016/1056-8719(94)90023-X.

    Article  Google Scholar 

  101. Benediktsson, A. M., Schachtele, S. J., Green, S. H., and Dailey, M. E. (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures, J. Neurosci. Methods, 141, 41-53, https://doi.org/10.1016/j.jneumeth.2004.05.013.

    Article  PubMed  Google Scholar 

  102. Gan, W.-B., Grutzendler, J., Wong, W. T., Wong, R. O. L., and Lichtman, J. W. (2000) Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations, Neuron, 27, 219-225, https://doi.org/10.1016/S0896-6273(00)00031-3.

    Article  CAS  PubMed  Google Scholar 

  103. Nimmerjahn, A., and Helmchen, F. (2012) In vivo labeling of cortical astrocytes with sulforhodamine 101 (SR101), Cold Spring Harb. Protoc., 2012, 326-334, https://doi.org/10.1101/pdb.prot068155.

    Article  PubMed  Google Scholar 

  104. Schnell, C., Hagos, Y., and Hülsmann, S. (2012) Active sulforhodamine 101 uptake into hippocampal astrocytes, PLoS One, 7, e49398, https://doi.org/10.1371/journal.pone.0049398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kafitz, K. W., Meier, S. D., Stephan, J., and Rose, C. R. (2008) Developmental profile and properties of sulforhodamine 101 – labeled glial cells in acute brain slices of rat hippocampus, J. Neurosci. Methods, 169, 84-92, https://doi.org/10.1016/j.jneumeth.2007.11.022.

    Article  CAS  PubMed  Google Scholar 

  106. Hagos, L., and Hülsmann, S. (2016) Unspecific labelling of oligodendrocytes by sulforhodamine 101 depends on astrocytic uptake via the thyroid hormone transporter OATP1C1 (SLCO1C1), Neurosci. Lett., 631, 13-18, https://doi.org/10.1016/j.neulet.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  107. Dieck, S. T., Heuer, H., Ehrchen, J., Otto, C., and Bauer, K. (1999) The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta-Ala-Lys-Nepsilon-AMCA in astrocytes, Glia, 25, 10-20, https://doi.org/10.1002/(sici)1098-1136(19990101)25:1<10::aid-glia2>3.0.co;2-y.

    Article  CAS  PubMed  Google Scholar 

  108. Preston, A. N., Farr, J. D., O’Neill, B. K., Thompson, K. K., Tsirka, S. E., et al. (2018) Visualizing the brain’s astrocytes with diverse chemical scaffolds, ACS Chem. Biol., 13, 1493-1498, https://doi.org/10.1021/acschembio.8b00391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Suzuki, R., Watanabe, J., Arata, S., Funahashi, H., Kikuyama, S., et al. (2003) A transgenic mouse model for the detailed morphological study of astrocytes, Neurosci. Res., 47, 451-454, https://doi.org/10.1016/j.neures.2003.08.008.

    Article  CAS  PubMed  Google Scholar 

  110. Vives, V., Alonso, G., Solal, A. C., Joubert, D., and Legraverend, C. (2003) Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice, J. Comp. Neurol., 457, 404-419, https://doi.org/10.1002/cne.10552.

    Article  CAS  PubMed  Google Scholar 

  111. Hirrlinger, P. G., Scheller, A., Braun, C., Quintela-Schneider, M., Fuss, B., et al. (2005) Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice, Mol. Cell. Neurosci., 30, 291-303, https://doi.org/10.1016/j.mcn.2005.08.011.

    Article  CAS  PubMed  Google Scholar 

  112. Nowotschin, S., Eakin, G. S., and Hadjantonakis, A.-K. (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives, Trends Biotechnol., 27, 266-276, https://doi.org/10.1016/j.tibtech.2009.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kanemaru, K. (2016) Visualization of astrocytic calcium signals in fine process using an ultrasensitive calcium indicator YC-Nano50, Folia Pharmacol. Japonica, 147, 190-193, https://doi.org/10.1254/fpj.147.190.

    Article  CAS  Google Scholar 

  114. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., et al. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature, 388, 882-887, https://doi.org/10.1038/42264.

    Article  CAS  PubMed  Google Scholar 

  115. Akerboom, J, Chen, T.-W., Wardill, T. J., Tian, L., Marvin, J. S., et al. (2012) Optimization of a GCaMP calcium indicator for neural activity imaging, J. Neurosci., 32, 13819-13840, https://doi.org/10.1523/JNEUROSCI.2601-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Akerboom, J., Carreras Calderón, N., Tian, L., Wabnig, S., Prigge, M., et al. (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics, Front. Mol. Neurosci., 6, 2, https://doi.org/10.3389/fnmol.2013.00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tallin, Y. N. (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2, Proc. Natl. Acad. Sci. USA, 103, 4753-4758, https://doi.org/10.1073/pnas.0509378103.

    Article  CAS  Google Scholar 

  118. Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., et al. (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators, Nat. Methods, 6, 875-881, https://doi.org/10.1038/nmeth.1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schulze, W., Hayata-Takano, A., Kamo, T., Nakazawa, T., Nagayasu, K., et al. (2015) Simultaneous neuron- and astrocyte-specific fluorescent marking, Biochem. Biophys. Res. Commun., 459, 81-86, https://doi.org/10.1016/j.bbrc.2015.02.073.

    Article  CAS  PubMed  Google Scholar 

  120. John Lin, C.-C., Yu, K., Hatcher, A., Huang, T.-W., Lee, H. K., et al. (2017) Identification of diverse astrocyte populations and their malignant analogs, Nat. Neurosci., 20, 396-405, https://doi.org/10.1038/nn.4493.

    Article  CAS  PubMed  Google Scholar 

  121. Batiuk, M. Y., Martirosyan, A., Wahis, J., de Vin, F., Marneffe, C., et al. (2020) Identification of region-specific astrocyte subtypes at single cell resolution, Nat. Commun., 11, 1220, https://doi.org/10.1038/s41467-019-14198-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lovatt, D., Sonnewald, U., Waagepetersen, H. S., Schousboe, A., He, W., et al. (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex, J. Neuroscience, 27, 12255-12266, https://doi.org/10.1523/JNEUROSCI.3404-07.2007.

    Article  CAS  PubMed  Google Scholar 

  123. Christopherson, K. S., Ullian, E. M., Stokes, C. C. A., Mullowney, C. E., Hell, J. W., et al. (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis, Cell, 120, 421-433, https://doi.org/10.1016/j.cell.2004.12.020.

    Article  CAS  PubMed  Google Scholar 

  124. Ilja Boor, P. K., de Groot, K., Waisfisz, Q., Kamphorst, W., Oudejans, C. B. M., et al. (2005) MLC1: a novel protein in distal astroglial processes, J. Neuropathol. Exp. Neurol., 64, 412-419, https://doi.org/10.1093/jnen/64.5.412.

    Article  Google Scholar 

  125. Kinboshi, M., Shimizu, S., Mashimo, T., Serikawa, T., Ito, H., et al. (2019) Down-regulation of astrocytic Kir4.1 Channels during the audiogenic epileptogenesis in leucine-rich glioma-inactivated 1 (Lgi1) mutant rats, IJMS, 20, 1013, https://doi.org/10.3390/ijms20051013.

    Article  CAS  PubMed Central  Google Scholar 

  126. Chiou, B., Gao, C., Giera, S., Folts, C. J., Kishore, P., et al. (2021) Cell type‐specific evaluation of ADGRG1/GPR56 function in developmental central nervous system myelination, Glia, 69, 413-423, https://doi.org/10.1002/glia.23906.

    Article  CAS  PubMed  Google Scholar 

  127. Gould, P., and Kamnasaran, D. (2011) Immunohistochemical analyses of NPAS3 expression in the developing human fetal brain, Anat. Histol. Embryol., 40, 196-203, https://doi.org/10.1111/j.1439-0264.2010.01059.x.

    Article  CAS  PubMed  Google Scholar 

  128. Kamnasaran, D., Muir, W. J., Ferguson-Smith, M. A., and Cox, D. W. (2003) Disruption of the neuronal PAS3 gene in a family affected with schizophrenia, J. Med. Genet., 40, 325-332, https://doi.org/10.1136/jmg.40.5.325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pieper, A. A., Wu, X., Han, T. W., Estill, S. J., Dang, Q., et al. (2005) The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice, Proc. Natl. Acad. Sci. USA, 102, 14052-14057, https://doi.org/10.1073/pnas.0506713102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Linde, K., Aunin, E., Meijer, D., and Bermingham, J. R. (2013) LGI proteins in the nervous system, ASN Neuro, 5, 167-181, https://doi.org/10.1042/AN20120095.

    Article  CAS  Google Scholar 

  131. Bai, Y., Du, L., Shen, L., Zhang, Y., and Zhang, L. (2009) GPR56 is highly expressed in neural stem cells but downregulated during differentiation, Neuroreport, 20, 918-922, https://doi.org/10.1097/WNR.0b013e32832c92d7.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., et al. (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, J. Neurosci., 34, 11929-11947, https://doi.org/10.1523/JNEUROSCI.1860-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Giera, S., Luo, R., Ying, Y., Ackerman, S. D., Jeong, S. J., et al. (2018) Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells, ELife, 7, e33385, https://doi.org/10.7554/eLife.33385.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li, T., Chiou, B., Gilman, C. K., Luo, R., Koshi, T., et al. (2020) A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding, EMBO J., 39, e104136, https://doi.org/10.15252/embj.2019104136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chung, W.-S., Welsh, C. A., Barres, B. A., and Stevens, B. (2015) Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci., 18, 1539-1545, https://doi.org/10.1038/nn.4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chung, W.-S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., et al. (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways, Nature, 504, 394-400, https://doi.org/10.1038/nature12776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., et al. (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse, Neuron, 89, 37-53, https://doi.org/10.1016/j.neuron.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  138. Tasic, B., Menon, V., Nguyen, T. N., Kim, T. K., Jarsky, T., et al. (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nat. Neurosci., 19, 335-346, https://doi.org/10.1038/nn.4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bang, J., Kim, H. Y., and Lee, H. (2016) Optogenetic and chemogenetic approaches for studying astrocytes and gliotransmitters, Exp. Neurobiol., 25, 205-221, https://doi.org/10.5607/en.2016.25.5.205.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., et al. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl. Acad. Sci. USA, 100, 13940-13945, https://doi.org/10.1073/pnas.1936192100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bekar, L. K., and Walz, W. (1999) Evidence for chloride ions as intracellular messenger substances in astrocytes, J. Neurophysiol., 82, 248-254, https://doi.org/10.1152/jn.1999.82.1.248.

    Article  CAS  PubMed  Google Scholar 

  142. El-Gaby, M., Zhang, Y., Wolf, K., Schwiening, C. J., Paulsen, O., et al. (2016) Archaerhodopsin selectively and reversibly silences synaptic transmission through altered pH, Cell Rep., 16, 2259, https://doi.org/10.1016/j.celrep.2016.07.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mederos, S., Hernández-Vivanco, A., Ramírez-Franco, J., Martín-Fernández, M., Navarrete, M., et al. (2019) Melanopsin for precise optogenetic activation of astrocyte-neuron networks, Glia, 67, 915-934, https://doi.org/10.1002/glia.23580.

    Article  PubMed  Google Scholar 

  144. Van Den Herrewegen, Y., Sanderson, T. M., Sahu, S., De Bundel, D., Bortolotto, Z. A., et al. (2021) Side-by-side comparison of the effects of Gq- and Gi-DREADD-mediated astrocyte modulation on intracellular calcium dynamics and synaptic plasticity in the hippocampal CA1, Mol Brain., 14, 144, https://doi.org/10.1186/s13041-021-00856-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nam, M. H., Won, W., Han, K. S., and Lee, C. J. (2021) Signaling mechanisms of µ-opioid receptor (MOR) in the hippocampus: disinhibition versus astrocytic glutamate regulation, Cell. Mol. Life Sci., 78, 415-426, https://doi.org/10.1007/s00018-020-03595-8.

    Article  CAS  PubMed  Google Scholar 

  146. Gerasimov, E., Erofeev, A., Borodinova, A., Bolshakova, A., Balaban, P., et al. (2021) Optogenetic activation of astrocytes-effects on neuronal network function, Int. J. Mol. Sci., 22, 9613, https://doi.org/10.3390/ijms22179613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shen, W., Nikolic, L., Meunier, C., Pfrieger, F., and Audinat, E. (2017) An autocrine purinergic signaling controls astrocyte-induced neuronal excitation, Sci Rep., 7, 11280, https://doi.org/10.1038/s41598-017-11793-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tanaka, K. F., Matsui, K., Sasaki, T., Sano, H., Sugio, S., et al. (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system, Cell Rep., 2, 397-406, https://doi.org/10.1016/j.celrep.2012.06.011.

    Article  CAS  PubMed  Google Scholar 

  149. Balachandar, L., Montejo, K. A., Castano, E., Perez, M., Moncion, C., et al. (2020) Simultaneous Ca2+ imaging and optogenetic stimulation of cortical astrocytes in adult murine brain slices, Curr. Protoc. Neurosci., 94, e110, https://doi.org/10.1002/cpns.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ryczko, D., Hanini-Daoud, M., Condamine, S., Bréant, B. J. B., Fougère, M., et al. (2021) S100β-mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex, J. Physiol., 599, 677-707, https://doi.org/10.1113/JP280501.

    Article  CAS  PubMed  Google Scholar 

  151. Shuvaev, A. N., Belozor, O. S., Mozhei, O., Yakovleva, D. A., Potapenko, I. V., et al. (2021) Chronic optogenetic stimulation of Bergman glia leads to dysfunction of EAAT1 and Purkinje cell death, mimicking the events caused by expression of pathogenic ataxin-1, Neurobiol. Dis., 154, 105340, https://doi.org/10.1016/j.nbd.2021.105340.

    Article  CAS  PubMed  Google Scholar 

  152. Iwai, Y., Ozawa, K., Yahagi, K., Mishima, T., Akther, S., et al. (2021) Transient astrocytic Gq signaling underlies remote memory enhancement, Front. Neural Circuits, 15, 658343, https://doi.org/10.3389/fncir.2021.658343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Takata, N., Sugiura, Y., Yoshida, K., Koizumi, M., Hiroshi, N., et al. (2018) Optogenetic astrocyte activation evokes BOLD fMRI response with oxygen consumption without neuronal activity modulation, Glia, 66, 2013-2023, https://doi.org/10.1002/glia.23454.

    Article  PubMed  Google Scholar 

  154. Moshkforoush, A., Lakshmini, B., Moncion C., Montejo K. A., and Riera, J. (2021) Unraveling ChR2-driven stochastic Ca2+ dynamics in astrocytes: a call for new interventional paradigms, PLoS Comput. Biol., 17, e1008648, https://doi.org/10.1371/journal.pcbi.1008648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hara, M., Kobayakawa, K., Ohkawa, Y., Kumamaru, H., Yokota, K., et al. (2017) Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury, Nat. Med., 23, 818-828, https://doi.org/10.1038/nm.4354.

    Article  CAS  PubMed  Google Scholar 

  156. Li, T., Chen, X., Zhang, C., Zhang, Y., and Yao, W. (2019) An update on reactive astrocytes in chronic pain, J. Neuroinflammation, 16, 140, https://doi.org/10.1186/s12974-019-1524-2.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia, Nature, 541, 481-487, https://doi.org/10.1038/nature21029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jang, E., Kim, J.-H., Lee, S., Kim, J.-H., Seo, J.-W., et al. (2013) Phenotypic Polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes, J. Immunol., 191, 5204-5219, https://doi.org/10.4049/jimmunol.1301637.

    Article  CAS  PubMed  Google Scholar 

  159. Lee, S., Jha, M. K., and Suk, K. (2015) Lipocalin-2 in THE Inflammatory activation of brain astrocytes, Crit. Rev. Immunol., 35, 77-84, https://doi.org/10.1615/CritRevImmunol.2015012127.

    Article  PubMed  Google Scholar 

  160. Jonas, S., and Izaurralde, E. (2015) Towards a molecular understanding of microRNA-mediated gene silencing, Nat. Rev. Genet., 16, 421-433, https://doi.org/10.1038/nrg3965.

    Article  CAS  PubMed  Google Scholar 

  161. Bartel, D. P., and Chen, C.-Z. (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs, Nat. Rev. Genet., 5, 396-400, https://doi.org/10.1038/nrg1328.

    Article  CAS  PubMed  Google Scholar 

  162. Thakur, B. K., Zhang, H., Becker, A., Matei, I., Huang, Y., et al. (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection, Cell Res., 24, 766-769, https://doi.org/10.1038/cr.2014.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Frühbeis, C., Fröhlich, D., Kuo, W. P., Amphornrat, J., Thilemann, S., et al. (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication, PLoS Biol., 11, e1001604, https://doi.org/10.1371/journal.pbio.1001604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Luo, X., Jean-Toussaint, R., Sacan, A., and Ajit, S. K. (2021) Differential RNA packaging into small extracellular vesicles by neurons and astrocytes, Cell. Commun. Signal., 19, 75, https://doi.org/10.1186/s12964-021-00757-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J. P., Petzold, G. C., et al. (2021) Reactive astrocyte nomenclature, definitions, and future directions, Nat. Neurosci., 24, 312-325, https://doi.org/10.1038/s41593-020-00783-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pekny, M., and Pekna, M. (2016) Reactive gliosis in the pathogenesis of CNS diseases, Biochim. Biophys. Acta, 1862, 483-491, https://doi.org/10.1016/j.bbadis.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  167. Gangisetty, O., Cabrera, M. A., and Murugan, S. (2018) Impact of epigenetics in aging and age related neurodegenerative diseases, Front. Biosci. (Landmark Ed), 23, 1445-1464, https://doi.org/10.2741/4654.

    Article  CAS  Google Scholar 

  168. Zumkehr, J., Rodriguez-Ortiz, C. J., Medeiros, R., and Kitazawa, M. (2018) Inflammatory cytokine, IL-1β, regulates glial glutamate transporter via microRNA-181a in vitro, J. Alzheimer’s Dis., 63, 965-975, https://doi.org/10.3233/JAD-170828.

    Article  CAS  Google Scholar 

  169. Guedes, J. R., Custódia, C. M., Silva, R. J., de Almeida, L. P., Pedroso de Lima, M. C., et al. (2014) Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model, Hum. Mol. Genet., 23, 6286-6301, https://doi.org/10.1093/hmg/ddu348.

    Article  CAS  PubMed  Google Scholar 

  170. Chu, Y. Y., Ko, C. Y., Wang, W. J., Wang, S. M., Gean, P. W., et al. (2016) Astrocytic CCAAT/enhancer binding protein δ regulates neuronal viability and spatial learning ability via miR-135a, Mol. Neurobiol., 53, 4173-4188, https://doi.org/10.1007/s12035-015-9359-z.

    Article  CAS  PubMed  Google Scholar 

  171. Cressatti, M., Song, W., Turk, A. Z., Garabed, L. R., Benchaya, J. A., et al. (2019) Glial HMOX1 expression promotes central and peripheral α-synuclein dysregulation and pathogenicity in parkinsonian mice, Glia, 67, 1730-1744, https://doi.org/10.1002/glia.23645.

    Article  PubMed  Google Scholar 

  172. Varcianna, A., Myszczynska, M. A., Castelli, L. M., O’Neill, B., Kim, Y., et al. (2019) Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS, EBioMedicine, 40, 626-635, https://doi.org/10.1016/j.ebiom.2018.11.067.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hoye, M. L., Regan, M. R., Jensen, L. A., Lake, A. M., Reddy, L. V., et al. (2018) Motor neuron-derived microRNAs cause astrocyte dysfunction in amyotrophic lateral sclerosis, Brain, 141, 2561-2575, https://doi.org/10.1093/brain/awy182.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 20-65-46004).

Author information

Authors and Affiliations

Authors

Contributions

Concept (Alla B. Salmina, Olga L. Vlasova), writing the text (Yana V. Gorina), designing drawings (Evgeniy I. Gerasimov), editing the manuscript (Alexander I. Erofeev, Anastasia V. Bolshakova), critical revision for intellectual content (Pavel M. Balaban, Ilya B. Bezprozvanny), approval of the final version of the article for publication (Alla B. Salmina, Olga L. Vlasova).

Corresponding author

Correspondence to Yana V. Gorina.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorina, Y.V., Salmina, A.B., Erofeev, A. . et al. Astrocyte Activation Markers. Biochemistry Moscow 87, 851–870 (2022). https://doi.org/10.1134/S0006297922090012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922090012

Keywords

Navigation