Skip to main content
Log in

Electroanalysis of Biomolecules: Rational Selection of Sensor Construction

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Methods of electrochemical analysis of biological objects based on the reaction of electro-oxidation/electro-reduction of molecules are presented. Polymer nanocomposite materials that modify electrodes to increase sensitivity of electrochemical events on the surface of electrodes are described. Examples of applications electrochemical biosensors constructed with nanocomposite material for detection of biological molecules are presented, advantages and drawbacks of different applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

DPV:

differential pulse voltammetry

dsDNA:

double-stranded DNA

LOD:

limit of detection

Mb:

myoglobin

MWCNT:

multi-walled carbon nanotubes

PILs:

poly(ionic liquid)s

SPE:

screen-printed graphite electrode

Trp:

tryptophan

Tyr:

tyrosine

References

  1. Bogdanov, A. A., Jr., Solovyev, I. D., and Savitsky, A. P. (2019) Sensors for visualization of proteolytic activity and their applications in human disease models, Usp. Biol. Khim., 59, 3-38.

    Google Scholar 

  2. Lokhov, P. G., Balashova, E. E., Trifonova, O. P., Maslov, D. L., and Archakov, A. I. (2020) Ten years of Russian metabolomics: history of development and basic results, Biomed. Khim., 66, 279-293.

    Article  CAS  PubMed  Google Scholar 

  3. Trifonova, O. P., Balashova, E. E., Maslov, D. L., Grigoryev, A. I., Lisitsa, A. V., et al. (2020) Metabolomic analysis of blood for creation of a digital image of healthy person, Biomed. Khim., 66, 216-223.

    Article  CAS  PubMed  Google Scholar 

  4. McShane, L. M., Cavenagh, M. M., Lively, T. G., Eberhard, D. A., Bigbee, W. L., et al. (2013) Criteria for the use of omics-based predictors in clinical trials, Nature, 502, 317-320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shumyantseva, V. V., Bulko, T. V., Sigolaeva, L. V., Kuzikov, A. V., Pogodin, P. V., and Archakov, A. I. (2018) Molecular imprinting coupled with electrochemical analysis for plasma samples classification in acute myocardial infarction diagnostic, Biosens. Bioelectron., 99, 216-222.

    Article  CAS  PubMed  Google Scholar 

  6. Shumyantseva, V. V., Kuzikov, A. V., Masamrekh, R. A., Bulko, T. V., and Archakov, A. I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450, Biosens. Bioelectron., 121, 192-204.

    Article  CAS  PubMed  Google Scholar 

  7. Mi, L., He, F., Jiang, L., Shangguan, L., Zhang, X., et al. (2017) Electrochemically-driven benzo[a]pyrene metabolism via human cytochrome P450 1A1 with reductase coated nitrogen-doped graphene nano-composites, J. Electroanal. Chem., 804, 23-28.

    Article  CAS  Google Scholar 

  8. Sharma, S., Singh, N., Tomar, V., and Chandra, R. (2018) A review on electrochemical detection of serotonin based on surface modified electrodes, Biosens. Bioelectron., 107, 76-93.

    Article  CAS  PubMed  Google Scholar 

  9. Anzar, N., Hasan, R., Tyagi, M., Yadav, N., and Narang, J. (2020) Carbon nanotube – a review on synthesis, properties and plethora of applications in the field of biomedical science, Sens. Int., 1, 100003.

    Article  Google Scholar 

  10. Carrara, S., Baj-Rossi, C., Boero, C., and De Micheli, G. (2014) Do carbon nanotubes contribute to electrochemical biosensing? Electrochim. Acta, 128, 102-112.

    Article  CAS  Google Scholar 

  11. Hu, C., and Hu, S. (2009) Carbon nanotube-based electrochemical sensors: principles and applications in biomedical systems, J. Sensors, 2009, 1-40.

    Article  Google Scholar 

  12. Baig, N., Sajid, M., and Saleh, T. A. (2019) Recent trends in nanomaterial-modified electrodes for electroanalytical applications, Trends Anal. Chem., 111, 47-61.

    Article  CAS  Google Scholar 

  13. Rivera-Gavidia, L. M., Luis-Sunga, M., Bousa, M., Vales, V., Kalbac, M., et al. (2020) S- and N-doped graphene-based catalysts for the oxygen evolution reaction, Electrochim. Acta, 340, 135975.

    Article  CAS  Google Scholar 

  14. Shumyantseva, V., Makhova, A., Bulko, T., Kuzikov, A., Shich, E., et al. (2015) Electrocatalytic cycle of P450 cytochromes: The protective and stimulating roles of antioxidants, RSC Adv., 87, 71306-71313.

    Article  Google Scholar 

  15. Shumyantseva, V. V., Bulko, T. V., Suprun, E. V., Chalenko, Y. M., Vagin, M. Y., et al. (2011) Electrochemical investigations of cytochrome P450, Biochim. Biophys. Acta Proteins Proteomics, 1814, 94-101.

    Article  CAS  Google Scholar 

  16. McDonnell, B., Hearty, S., Leonard, P., and O’Kennedy, R. (2009) Cardiac biomarkers and the case for point-of-care testing, Clin. Biochem., 42, 549-561.

    Article  CAS  PubMed  Google Scholar 

  17. Marenzi, G., Giorgio, M., Trinei, M., Moltrasio, M., Ravagnani, P., et al. (2010) Circulating cytochrome c as potential biomarker of impaired reperfusion in ST-segment elevation acute myocardial infarction, Am. J. Cardiol., 106, 1443-1449.

    Article  CAS  PubMed  Google Scholar 

  18. Schweitzer-Stenner, R. (2018) Relating the multi-functionality of cytochrome c to membrane binding and structural conversion, Biophys. Rev., 10, 1151-1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manickam, P., Kaushik, A., Karunakaran, C., and Bhansali, S. (2017) Recent advances in cytochrome c biosensing technologies, Biosens. Bioelectron., 87, 654-668.

    Article  CAS  PubMed  Google Scholar 

  20. Yin, J., and Miao, P. (2016) Apoptosis evaluation by electrochemical techniques, Chem. Asian J., 11, 632-641.

    Article  CAS  PubMed  Google Scholar 

  21. Hasanzadeh, M., Shadjou, N., de la Guardia, M. (2017) Early stage diagnosis of programmed cell death (apoptosis) using electroanalysis: nanomaterial and methods overview, Trends Anal. Chem., 93, 199-211.

    Article  CAS  Google Scholar 

  22. Nikolaev, S., Lemmens, L., Koessler, T., Blouin, J.-L., and Nouspikel, T. (2018) Circulating tumoral DNA: preanalytical validation and quality control in a diagnostic laboratory, Anal. Biochem., 542, 34-39.

    Article  CAS  PubMed  Google Scholar 

  23. Huffnagle, I. M., Joyner, A., Rumble, B., Hysa, S., Rudel, D., and Hvastkovs, E. G. (2014) Dual electrochemical and physiological apoptosis assay detection of in vivo generated nickel chloride induced DNA damage in Caenorhabditis elegans, Anal. Chem., 86, 8418-8424.

    Article  CAS  PubMed  Google Scholar 

  24. Sanjuán, I., Martin-Gómez, A. N., Graham, J., Hernández-Ibáňez, N., Banks, C., et al. (2018) The electrochemistry of 5-halocytosines at carbon based electrodes towards epigenetic sensing, Electrochim. Acta, 282, 459-468.

    Article  Google Scholar 

  25. Campos-Carrillo, A., Weitzel, J. N., Sahoo, P., Rockne, R., Mokhnatkin, J. V., et al. (2020) Circulating tumor DNA as an early cancer detection tool, Pharmacol. Ther., 207, 107-458.

    Article  Google Scholar 

  26. Kogikoski, S., Jr., Paschoalino, W. J., Cantelli, L., Silva, W., and Kubota, L. T. (2019) Electrochemical sensing based on DNA nanotechnology, Trends Anal. Chem., 118, 597-605.

    Article  CAS  Google Scholar 

  27. Zhang, Y., Zhang, W. B., Liu, C., Zhang, P., Balaeff, A., and Beratan, D. N. (2016) DNA charge transport: moving beyond 1D, Surf. Sci., 652, 33-38.

    Article  CAS  Google Scholar 

  28. Machera, H. C., García-Fernándeza, N., Adsuar-Gómez, A., Porras-Lópezc, M., González-Calleb, A., et al. (2019) Donor-specific circulating cell free DNA as a noninvasive biomarker of graft injury in heart transplantation, Clin. Chim. Acta, 495, 590-597.

    Article  Google Scholar 

  29. Udomsinprasert, W., Poovorawan, Y., Chongsrisawat, V., Vejchapipat, P., Jittikoon, J., and Honsawek, S. (2019) Leukocyte mitochondrial DNA copy number as a potential biomarker indicating poor outcome in biliary atresia and its association with oxidative DNA damage and telomere length, Mitochondrion, 47, 1-9.

    Article  CAS  PubMed  Google Scholar 

  30. Shoja, Y., Kermanpur, A., and Karimzadeh, F. (2018) Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxyte-tracycline metallopolymer nanoparticles modified pencil graphite electrode, Biosens. Bioelectron., 113, 108-115.

    Article  CAS  PubMed  Google Scholar 

  31. Brotons, A., Vidal-Iglesias, F., Solla, J., and Iniesta, J. (2016) Carbon materials for the electrooxidation of nucleobases, nucleosides and nucleotides toward cytosine methylation detection: a review, Anal. Methods, 8, 702-715.

    Article  CAS  Google Scholar 

  32. Herl, T., Taraba, L., Bohm, D., and Marysik, F.-M. (2019) Electrooxidation of cytosine on bare screen-printed carbon electrodes studied by on-line electrochemistry-capillary electrophoresis-mass spectrometry, Electrochem. Commun., 99, 41-45.

    Article  CAS  Google Scholar 

  33. Li, C.-C., Wang, Z.-Y., Wang, L.-J., and Zhang, C.-Y. (2019) Biosensors for epigenetic biomarkers detection: a review, Biosens. Bioelectron., 144, 111-695.

    Article  Google Scholar 

  34. Wang, G., Liu, Y., and Hu, N. (2007) Comparative electrochemical study of myoglobin loaded in different types of layer-by-layer assembly films, Electrochim. Acta, 53, 2071-2079.

    Article  CAS  Google Scholar 

  35. Shumyantseva, V. V., Sigolaeva, L. V., Agafonova, L. E., Bulko, T. V., Pergushov, D. V., et al. (2015) Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites, J. Mater. Chem. B, 3, 5467-5477.

    Article  CAS  PubMed  Google Scholar 

  36. Alim, S., Vejayan, J., Yusoff, M., and Kafi, A. K. M. (2018) Recent uses of carbon nanotubes and gold nanoparticles in electrochemistry with application in biosensing, Biosens. Bioelectron., 121, 125-136.

    Article  CAS  PubMed  Google Scholar 

  37. Matveeva, E. G., Gryczynski, Z., and Lakowicz, J. R. (2005) Myoglobin immunoassay based on metal particle-enhanced fluorescence, J. Immunol. Methods, 302, 26-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang, Z., Huang, J., He, H., Ma, C., and Wang, K. (2020) Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis, Coord. Chem. Rev., 415, 213-317.

    Article  Google Scholar 

  39. Li, Q., Batchelor-McAuley, C., and Compon, R. G. (2010) Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surface to switch between adsorptive and diffusional responses, J. Phys. Chem. B, 114, 7423-7428.

    Article  CAS  PubMed  Google Scholar 

  40. Gonçalves, L. M., Bachelor-McAuley, C., Barros, A., and Comton, R. G. (2010) Electrochemical oxidation of adenine: a mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode, J. Phys. Chem. C, 114, 14213-14219.

    Article  Google Scholar 

  41. Trotter, M., Borst, N., Thewes, R., and von Stetten, F. (2020) Review: electrochemical DNA sensing – principles, commercial systems, and applications, Biosens. Bioelectron., 154, 112069.

    Article  CAS  PubMed  Google Scholar 

  42. Blair, E., Damion, K., and Corrigan, D. R. (2019) A review of microfabricated electrochemical biosensors for DNA detection, Biosens. Bioelectron., 134, 57-67.

    Article  CAS  PubMed  Google Scholar 

  43. Arvand, M., Niazi, A., Mazhabi, R. M., and Biparva, P. (2012) Direct electrochemistry of adenine on multiwalled carbon nanotube-ionic liquid composite film modified carbon paste electrode and its determination in DNA, J. Mol. Liquids, 173, 1-7.

    Article  CAS  Google Scholar 

  44. Sun, W., Li, Y., Duan, Y., and Jiao, K. (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination, Biosens. Bioelectron., 24, 988-993.

    Article  CAS  Google Scholar 

  45. Hasoň, S., Fojta, M., and Ostatná, V. (2019) Label-free electrochemical analysis of purine nucleotides and nucleobaes at disposable carbon electrodes in microliter volumes, J. Electroanal. Chem., 847, 113-252.

    Article  Google Scholar 

  46. Palecek, E., and Bartosik, M. (2012) Electrochemistry of nucleic acids, Chem. Rev., 112, 3427-3481.

    Article  CAS  PubMed  Google Scholar 

  47. Reipa, V., Atha, D. H., Coskun, S. H., Sims, C. M., and Nelson, B. C. (2018) Controlled potential electro-oxidation of genomic DNA, PLoS One, 13, e0190907.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kowalczyk, A. (2020) Trends and perspectives in DNA biosensors as diagnostic devices, Curr. Opin. Electrochem., 23, 36-41.

    Article  CAS  Google Scholar 

  49. Ji, L., Yu, S., Zhou, X., Bao, Y., Yang, F., et al. (2019) Modification of electron structure on the semiconducting single-walled carbon nanotubes for effectively electrosensing guanine and adenine, Anal. Chim. Acta, 1079, 86-93.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, S., Zhuang, X., Chen, D., Luan, F., He, T., et al. (2019) Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane, Microchim. Acta, 186, 450.

    Article  Google Scholar 

  51. Ren, S., Wang, H., Zhang, H., Yu, L., Li, M., and Li, M. (2015) Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst, J. Electroanal. Chem., 750, 65-73.

    Article  CAS  Google Scholar 

  52. Wang, H., Ma, R., Sun, F., Jia, L., Zhang, W., et al. (2018) A versatile label-free electrochemical biosensor for circulating tumor DNA based on dual enzyme assisted multiple amplification strategy, Biosens. Bioelectron., 122, 224-230.

    Article  CAS  PubMed  Google Scholar 

  53. Sigolaeva, L. V., Bulko, T. V., Kozin, M. S., Zhang, W., Köhler, M., et al. (2019) Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA, Polymer, 168, 95-103.

    Article  CAS  Google Scholar 

  54. Shumyantseva, V. V., Agafonova, L. E., Bulko, T. V., Kuzikov, A. V., and Masamrekh, R. A. (2020) Preparation of electrochemical biosensor systems for the analysis of bio-objects: reasonable choice of working surface modifications for studies in the “smart-electrode” mode, Biomed. Chem. Res. Methods, 3, e00119.

    Article  Google Scholar 

  55. Shumyantseva, V. V., Bulko, T. V., Kuzikov, A. V., Masamrekh, R. A., Konyakhina, A. Yu., et al. (2020) All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study their electrocatalytical conversion by cytochromes P450, Electrochim. Acta, 336, 135579.

    Article  CAS  Google Scholar 

  56. Sigolaeva, L. V., Bulko, T. V., Konyakhina, A. Yu., Kuzikov, A. V., Masamrekh, R. A., et al. (2020) Rational design of amphiphilic diblock copolymer/MWCNT surface modifiers and their application for direct electrochemical sensing of DNA, Polymers, 12, 1514.

    Article  CAS  PubMed Central  Google Scholar 

  57. Aghamiri, Z. S., Mohsennia, M., and Rafiee-Pour, H.-A. (2018) Immobilization of cytochrome c and its application as electrochemical biosensors, Talanta, 176, 195-207.

    Article  CAS  PubMed  Google Scholar 

  58. Santucci, R., Sinibaldi, F., Cozza, P., Polticelli, F., and Fiorucci, L. (2019) Cytochrome c: an extreme multifunctional protein with a key role in cell fate, Int. J. Biol. Macromol., 136, 1237-1246.

    Article  CAS  PubMed  Google Scholar 

  59. Shumyantseva, V. V., Bulko, T. V., Kuzikov, A. V., Masamrekh, R. A., Pergushov, D. V., et al. (2020) Electrochemical fingerprint of cytochrome c on a MWCNT/polymer nanocomposite electrode, Mendeleev Commun., 30, 299-301.

    Article  CAS  Google Scholar 

  60. Lin, Y.-W. (2018) Structure and function of heme proteins regulated by diverse post-translational modifications, Arch. Biochem. Biophys., 641, 1-30.

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez-Roldan, V., Garcia-Heredia, J., Navarro, J., De la Rosa, M., and Hervas, M. (2008) Effect of nitration on the physicochemical and kinetic features of wild-type and monotyrosine mutants of human respiratory cytochrome c, Biochemistry, 47, 12371-12379.

    Article  CAS  PubMed  Google Scholar 

  62. Ly, H. K., Utesch, T., Diaz-Moreno, I, Garcia-Heredia, J. M., De La Rosa, M. A., and Hildebrandt, P. (2012) Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration, J. Phys. Chem. B, 116, 5694-5702.

    Article  CAS  PubMed  Google Scholar 

  63. Lee, I., Salomon, A., Yu, K., Doan, J. W., Grossman, L., and Huttemann, M. (2006) New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo, Biochemistry, 45, 9121-9128.

    Article  CAS  PubMed  Google Scholar 

  64. Yu, H., Lee, I., Salomon, K., Hüttemann, Yu. M. (2008) Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration, Biochim. Biophys. Acta, 1777, 1066-1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kamel, M., Raissi, H., Hashemzadeh, H., and Mohammadifard, K. (2020) Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation, Amino Acids, 52, 1465-1478.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was done in the framework of the Russian Federation fundamental research program for the long-term period for 2021-2030. The modification of electrode surfaces by polymer materials was financially supported by the Russian Science Foundation (project no. 18-44-04011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Shumyantseva.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumyantseva, V.V., Agafonova, L.E., Bulko, T.V. et al. Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry Moscow 86 (Suppl 1), S140–S151 (2021). https://doi.org/10.1134/S0006297921140108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921140108

Keywords

Navigation