Skip to main content

Advertisement

Log in

Live-Cell Super-resolution Fluorescence Microscopy

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Super-resolution fluorescence microscopy (nanoscopy) enables imaging with a spatial resolution much higher than the diffraction limit of optical microscopy. However, the methods of fluorescence nanoscopy are still poorly suitable for studying living cells. In this review, we describe some examples of live nanoscopy-based discoveries and focus on the development of methods for nanoscopy and specific fluorescent labeling aimed to decrease the damaging effects of light illumination on live samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3B:

Bayesian analysis of bleaching and blinking

EM-CCD:

electron-multiplying charge-coupled device

FAP:

fluorogen-activating protein

FLINC:

fluorescence fluctuation increase by contact

GFP:

green fluorescent protein

LLSM:

lattice light sheet microscopy

PAINT:

points accumulation for imaging in nanoscale topography

RESOLFT:

reversible saturable/switchable optical linear fluorescence transition

sCMOS:

scientific complementary metal-oxide-semiconductor

SIM:

structured illumination microscopy

SMLM:

single molecule localization microscopy

SOFI:

super-resolution optical fluctuation imaging

SRRF:

super-resolution radial fluctuation

STED:

stimulated emission depletion

References

  1. Lichtman, J. W., and Conchello, J.–A. (2005) Fluorescence microscopy, Nat. Methods, 2, 910–919.

    Article  CAS  PubMed  Google Scholar 

  2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., and Prasher, D. (1994) Green fluorescent protein as a marker for gene expression, Science, 263, 802–805.

    Article  CAS  PubMed  Google Scholar 

  3. Mishin, A. S., Belousov, V. V., Solntsev, K. M., and Lukyanov, K. A. (2015) Novel uses of fluorescent proteins, Curr. Opin. Chem. Biol., 27, 1–9.

    Article  CAS  PubMed  Google Scholar 

  4. Morris, M. C. (2013) Fluorescent biosensors–probing protein kinase function in cancer and drug discovery, Biochim. Biophys. Acta, 1834, 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, B., Bates, M., and Zhuang, X. (2009) Super–reso–lution fluorescence microscopy, Annu. Rev. Biochem., 78, 993–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bozzola, J. J., and Russell, L. D. (1999) Electron Microscopy: Principles and Techniques for Biologists, Jones & Bartlett Learning, USA.

    Google Scholar 

  7. Zhou, Z. H., and Hong Zhou, Z. (2008) Towards atomic resolution structural determination by single–particle cryo–electron microscopy, Curr. Opin. Struct. Biol., 18, 218–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hell, S., and Stelzer, E. H. K. (1992) Fundamental improvement of resolution with a 4Pi–confocal fluores–cence microscope using two–photon excitation, Opt. Commun., 93, 277–282.

    Article  Google Scholar 

  9. Gustafsson, M. G., Agard, D. A., and Sedat, J. W. (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution, J. Microsc., 195, 10–16.

    Article  CAS  PubMed  Google Scholar 

  10. Bewersdorf, J., Schmidt, R., and Hell, S. W. (2006) Comparison of I5M and 4Pi–microscopy, J. Microsc., 222, 105–117.

    Article  CAS  PubMed  Google Scholar 

  11. Gustafsson, M. G. (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc., 198, 82–87.

    Article  CAS  PubMed  Google Scholar 

  12. Hell, S. W., and Wichmann, J. (1994) Breaking the diffrac–tion resolution limit by stimulated emission: stimulated–emission–depletion fluorescence microscopy, Opt. Lett., 19, 780–782.

    Article  CAS  PubMed  Google Scholar 

  13. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott–Schwartz, J., and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution, Science, 313, 1642–1645.

    Article  PubMed  Google Scholar 

  14. Rust, M. J., Bates, M., and Zhuang, X. (2006) Sub–diffrac–tion–limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, 3, 793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hess, S. T., Girirajan, T. P. K., and Mason, M. D. (2006) Ultra–high–resolution imaging by fluorescence photo–activation localization microscopy, Biophys. J., 91, 4258–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mockl, L., Lamb, D. C., and Brauchle, C. (2014) Super–resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner, Angew. Chem. Int. Ed. Engl., 53, 13972–13977.

    Article  CAS  Google Scholar 

  17. Hell, S. W. (2007) Far–field optical nanoscopy, Science, 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  18. Klementieva, N. V., Zagaynova, E. V., Lukyanov, K. A., and Mishin, A. S. (2016) The principles of super–resolution flu–orescence microscopy (review), Sovrem. Tehnol. Med., 8, 130–140.

    Article  Google Scholar 

  19. Klementieva, N. V., Bozhanova, N. G., Zagaynova, E. V., Lukyanov, K. A., and Mishin, A. S. (2017) Fluorophores for single–molecule localization microscopy, Russ. J. Bioorg. Chem., 43, 227–234.

    Article  CAS  Google Scholar 

  20. Sahl, S. J., Hell, S. W., and Jakobs, S. (2017) Fluorescence nanoscopy in cell biology, Nat. Rev. Mol. Cell Biol., 18, 685–701.

    Article  CAS  PubMed  Google Scholar 

  21. Vicidomini, G., Bianchini, P., and Diaspro, A. (2018) STED super–resolved microscopy, Nat. Methods, 15, 173–182.

    Article  CAS  PubMed  Google Scholar 

  22. Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., and Hell, S. W. (2006) STED microscopy reveals that synapto–tagmin remains clustered after synaptic vesicle exocytosis, Nature, 440, 935–939.

    Article  CAS  PubMed  Google Scholar 

  23. Bottanelli, F., Kromann, E. B., Allgeyer, E. S., Erdmann, R. S., Wood Baguley, S., Sirinakis, G., Schepartz, A., Baddeley, D., Toomre, D. K., Rothman, J. E., and Bewersdorf, J. (2016) Two–colour live–cell nanoscale imag–ing of intracellular targets, Nat. Commun., 7, 10778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vicidomini, G., Moneron, G., Han, K. Y., Westphal, V., Ta, H., Reuss, M., Engelhardt, J., Eggeling, C., and Hell, S. W. (2011) Sharper low–power STED nanoscopy by time gating, Nat. Methods, 8, 571–573.

    Article  CAS  PubMed  Google Scholar 

  25. Gottfert, F., Pleiner, T., Heine, J., Westphal, V., Gorlich, D., Sahl, S. J., and Hell, S. W. (2017) Strong signal increase in STED fluorescence microscopy by imaging regions of sub–diffraction extent, Proc. Natl. Acad. Sci. USA, 114, 2125–2130.

    Article  CAS  PubMed  Google Scholar 

  26. Hofmann, M., Eggeling, C., Jakobs, S., and Hell, S. W. (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly pho–toswitchable proteins, Proc. Natl. Acad. Sci. USA, 102, 17565–17569.

    Article  CAS  PubMed  Google Scholar 

  27. Brakemann, T., Stiel, A. C., Weber, G., Andresen, M., Testa, I., Grotjohann, T., Leutenegger, M., Plessmann, U., Urlaub, H., Eggeling, C., Wahl, M. C., Hell, S. W., and Jakobs, S. (2011) A reversibly photoswitchable GFP–like protein with fluorescence excitation decoupled from switching, Nat. Biotechnol., 29, 942–947.

    Article  CAS  PubMed  Google Scholar 

  28. Grotjohann, T., Testa, I., Leutenegger, M., Bock, H., Urban, N. T., Lavoie–Cardinal, F., Willig, K. I., Eggeling, C., Jakobs, S., and Hell, S. W. (2011) Diffraction–unlimit–ed all–optical imaging and writing with a photochromic GFP, Nature, 478, 204–208.

    Article  CAS  PubMed  Google Scholar 

  29. Grotjohann, T., Testa, I., Reuss, M., Brakemann, T., Eggeling, C., Hell, S. W., and Jakobs, S. (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells, Elife, 1, e00248.

    Book  Google Scholar 

  30. Lavoie–Cardinal, F., Jensen, N. A., Westphal, V., Stiel, A. C., Chmyrov, A., Bierwagen, J., Testa, I., Jakobs, S., and Hell, S. W. (2014) Two–color RESOLFT nanoscopy with green and red fluorescent photochromic proteins, Chemphyschem, 15, 655–663.

    Article  CAS  PubMed  Google Scholar 

  31. Shemiakina, I. I., Ermakova, G. V., Cranfill, P. J., Baird, M. A., Evans, R. A., Souslova, E. A., Staroverov, D. B., Gorokhovatsky, A. Y., Putintseva, E. V., Gorodnicheva, T. V., Chepurnykh, T. V., Strukova, L., Lukyanov, S., Zaraisky, A. G., Davidson, M. W., Chudakov, D. M., and Shcherbo, D. (2012) A monomeric red fluorescent protein with low cytotoxicity, Nat. Commun., 3, 1204.

    Article  CAS  PubMed  Google Scholar 

  32. Pennacchietti, F., Serebrovskaya, E. O., Faro, A. R., Shemyakina, I. I., Bozhanova, N. G., Kotlobay, A. A., Gurskaya, N. G., Boden, A., Dreier, J., Chudakov, D. M., Lukyanov, K. A., Verkhusha, V. V., Mishin, A. S., and Testa, I. (2018) Fast reversibly photo–switching red fluorescent proteins for live–cell RESOLFT nanoscopy, Nat. Methods, 15, 601–604.

    Article  CAS  PubMed  Google Scholar 

  33. Chmyrov, A., Keller, J., Grotjohann, T., Ratz, M., d’Este, E., Jakobs, S., Eggeling, C., and Hell, S. W. (2013) Nanoscopy with more than 100,000 “doughnuts,” Nat. Methods, 10, 737–740.

    Article  CAS  PubMed  Google Scholar 

  34. Balzarotti, F., Eilers, Y., Gwosch, K. C., Gynna, A. H., Westphal, V., Stefani, F. D., Elf, J., and Hell, S. W. (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes, Science, 355, 606–612.

    Article  CAS  PubMed  Google Scholar 

  35. Patterson, G. H., and Lippincott–Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of pro–teins and cells, Science, 297, 1873–1877.

    Article  CAS  PubMed  Google Scholar 

  36. Subach, F. V., Patterson, G. H., Renz, M., Lippincott–Schwartz, J., and Verkhusha, V. V. (2010) Bright monomer–ic photoactivatable red fluorescent protein for two–color super–resolution sptPALM of live cells, J. Am. Chem. Soc., 132, 6481–6491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gurskaya, N. G., Verkhusha, V. V., Shcheglov, A. S., Staroverov, D. B., Chepurnykh, T. V., Fradkov, A. F., Lukyanov, S., and Lukyanov, K. A. (2006) Engineering of a monomeric green–to–red photoactivatable fluorescent pro–tein induced by blue light, Nat. Biotechnol., 24, 461–465.

    Article  CAS  PubMed  Google Scholar 

  38. Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A., Spindler, K–D., and Nienhaus, G. U. (2004) EosFP, a fluorescent marker protein with UV–inducible green–to–red fluorescence conversion, Proc. Natl. Acad. Sci. USA, 101, 15905–15910.

    Article  CAS  PubMed  Google Scholar 

  39. McEvoy, A. L., Hoi, H., Bates, M., Platonova, E., Cranfill, P. J., Baird, M. A., Davidson, M. W., Ewers, H., Liphardt, J., and Campbell, R. E. (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities, PLoS One, 7, e51314.

    Google Scholar 

  40. Dempsey, W. P., Georgieva, L., Helbling, P. M., Sonay, A. Y., Truong, T. V., Haffner, M., and Pantazis, P. (2015) In vivo single–cell labeling by confined primed conversion, Nat. Methods, 12, 645–648.

    Article  CAS  PubMed  Google Scholar 

  41. Klementieva, N. V., Lukyanov, K. A., Markina, N. M., Lukyanov, S. A., Zagaynova, E. V., and Mishin, A. S. (2016) Green–to–red primed conversion of Dendra2 using blue and red lasers, Chem. Commun., 52, 13144–13146.

    Article  CAS  Google Scholar 

  42. Mohr, M. A., Kobitski, A. Y., Sabater, L. R., Nienhaus, K., Obara, C. J., Lippincott–Schwartz, J., Nienhaus, G. U., and Pantazis, P. (2017) Rational engineering of photocon–vertible fluorescent proteins for dual–color fluorescence nanoscopy enabled by a triplet–state mechanism of primed conversion, Angew. Chem. Int. Ed Engl., 56, 11628–11633.

    Article  CAS  PubMed  Google Scholar 

  43. Turkowyd, B., Balinovic, A., Virant, D., Golz Carnero, H. G., Caldana, F., and Endesfelder, U. (2017) A general mechanism of photoconversion of green–to–red fluorescent proteins based on blue and infrared light reduces phototox–icity in live–cell single–molecule imaging, Angew. Chem. Int. Ed. Engl., 56, 11634–11639.

    Article  CAS  PubMed  Google Scholar 

  44. Waldchen, S., Lehmann, J., Klein, T., van de Linde, S., and Sauer, M. (2015) Light–induced cell damage in live–cell super–resolution microscopy, Sci. Rep., 5, 15348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharonov, A., and Hochstrasser, R. M. (2006) Wide–field sub–diffraction imaging by accumulated binding of diffus–ing probes, Proc. Natl. Acad. Sci. USA, 103, 18911–18916.

    Article  CAS  PubMed  Google Scholar 

  46. Takakura, H., Zhang, Y., Erdmann, R. S., Thompson, A. D., Lin, Y., McNellis, B., Rivera–Molina, F., Uno, S.–N., Kamiya, M., Urano, Y., Rothman, J. E., Bewersdorf, J., Schepartz, A., and Toomre, D. (2017) Long time–lapse nanoscopy with spontaneously blinking membrane probes, Nat. Biotechnol., 35, 773–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P., and Simmel, F. C. (2010) Single–molecule kinetics and super–resolution microscopy by fluorescence imaging of transient binding on DNA origami, Nano Lett., 10, 4756–4761.

    Article  CAS  PubMed  Google Scholar 

  48. Szent–Gyorgyi, C., Schmidt, B. F., Schmidt, B. A., Creeger, Y., Fisher, G. W., Zakel, K. L., Adler, S., Fitzpatrick, J. A. J., Woolford, C. A., Yan, Q., Vasilev, K. V., Berget, P. B., Bruchez, M. P., Jarvik, J. W., and Waggoner, A. (2008) Fluorogen–activating single–chain antibodies for imaging cell surface proteins, Nat. Biotechnol., 26, 235–240.

    Article  CAS  PubMed  Google Scholar 

  49. Yan, Q., Schwartz, S. L., Maji, S., Huang, F., Szent–Gyorgyi, C., Lidke, D. S., Lidke, K. A., and Bruchez, M. P. (2014) Localization microscopy using noncovalent fluo–rogen activation by genetically encoded fluorogen–activat–ing proteins, Chemphyschem, 15, 687–695.

    Article  CAS  PubMed  Google Scholar 

  50. Bozhanova, N. G., Baranov, M. S., Klementieva, N. V., Sarkisyan, K. S., Gavrikov, A. S., Yampolsky, I. V., Zagaynova, E. V., Lukyanov, S. A., Lukyanov, K. A., and Mishin, A. S. (2017) Protein labeling for live cell fluores–cence microscopy with a highly photostable renewable sig–nal, Chem. Sci., 8, 7138–7142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cox, S., Rosten, E., Monypenny, J., Jovanovic–Talisman, T., Burnette, D. T., Lippincott–Schwartz, J., Jones, G. E., and Heintzmann, R. (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics, Nat. Methods, 9, 195–200.

    Article  CAS  Google Scholar 

  52. Xu, F., Zhang, M., He, W., Han, R., Xue, F., Liu, Z., Zhang, F., Lippincott–Schwartz, J., and Xu, P. (2016) Live cell single molecule–guided Bayesian localization super res–olution microscopy, Cell Res., 27, 713–716.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Burnette, D. T., Sengupta, P., Dai, Y., Lippincott–Schwartz, J., and Kachar, B. (2011) Bleaching/blinking assisted localization microscopy for super–resolution imag–ing using standard fluorescent molecules, Proc. Natl. Acad. Sci. USA, 108, 21081–21086.

    Article  PubMed  Google Scholar 

  54. Simonson, P. D., Rothenberg, E., and Selvin, P. R. (2011) Single–molecule–based super–resolution images in the presence of multiple fluorophores, Nano Lett., 11, 5090–5096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marsh, R. J., Pfisterer, K., Bennett, P., Hirvonen, L. M., Gautel, M., Jones, G. E., and Cox, S. (2018) Artifact–free high–density localization microscopy analysis, Nat. Methods, 15, 689–692.

    Article  CAS  PubMed  Google Scholar 

  56. Dertinger, T., Colyer, R., Iyer, G., Weiss, S., and Enderlein, J. (2009) Fast, background–free, 3D super–resolution opti–cal fluctuation imaging (SOFI), Proc. Natl. Acad. Sci. USA, 106, 22287–22292.

    Article  PubMed  Google Scholar 

  57. Dertinger, T., Colyer, R., Vogel, R., Enderlein, J., and Weiss, S. (2010) Achieving increased resolution and more pixels with Super–resolution Optical Fluctuation Imaging (SOFI), Opt. Express, 18, 18875–18885.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dedecker, P., Mo, G. C. H., Dertinger, T., and Zhang, J. (2012) Widely accessible method for super–resolution fluo–rescence imaging of living systems, Proc. Natl. Acad. Sci. USA, 109, 10909–10914.

    Article  PubMed  Google Scholar 

  59. Zhang, X., Chen, X., Zeng, Z., Zhang, M., Sun, Y., Xi, P., Peng, J., and Xu, P. (2015) Development of a reversibly switchable fluorescent protein for super–resolution optical fluctuation imaging (SOFI), ACS Nano, 9, 2659–2667.

    Article  CAS  PubMed  Google Scholar 

  60. Klementieva, N. V., Pavlikov, A. I., Moiseev, A. A., Bozhanova, N. G., Mishina, N. M., Lukyanov, S. A., Zagaynova, E. V., Lukyanov, K. A., and Mishin, A. S. (2017) Intrinsic blinking of red fluorescent proteins for super–resolution microscopy, Chem. Commun., 53, 949–951.

    Article  CAS  Google Scholar 

  61. Vandenberg, W., and Dedecker, P. (2017) Effect of probe diffusion on the SOFI imaging accuracy, Sci. Rep., 7, 44665.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Peeters, Y., Vandenberg, W., Duwe, S., Bouwens, A., Lukes, T., Ruckebusch, C., Lasser, T., and Dedecker, P. (2017) Correcting for photodestruction in super–resolution optical fluctuation imaging, Sci. Rep., 7, 10470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Geissbuehler, S., Bocchio, N., Dellagiacoma, C., Berclaz, C., Leutenegger, M., and Lasser, T. (2012) Mapping molec–ular statistics with balanced super–resolution optical fluctu–ation imaging (bSOFI), Opt. Nanoscopy, 1, 4.

    Article  Google Scholar 

  64. Mo, G. C. H., Ross, B., Hertel, F., Manna, P., Yang, X., Greenwald, E., Booth, C., Plummer, A. M., Tenner, B., Chen, Z., Wang, Y., Kennedy, E. J., Cole, P. A., Fleming, K. G., Palmer, A., Jimenez, R., Xiao, J., Dedecker, P., and Zhang, J. (2017) Genetically encoded biosensors for visual–izing live–cell biochemical activity at super–resolution, Nat. Methods, 14, 427–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hertel, F., Mo, G. C. H., Duwe, S., Dedecker, P., and Zhang, J. (2016) RefSOFI for mapping nanoscale organi–zation of protein–protein interactions in living cells, Cell Rep., 14, 390–400.

    Article  CAS  PubMed  Google Scholar 

  66. Duwe, S., Vandenberg, W., and Dedecker, P. (2017) Live–cell monochromatic dual–label sub–diffraction microscopy by mt–pcSOFI, Chem. Commun., 53, 7242–7245.

    Article  CAS  Google Scholar 

  67. Gustafsson, N., Culley, S., Ashdown, G., Owen, D. M., Pereira, P. M., and Henriques, R. (2016) Fast live–cell con–ventional fluorophore nanoscopy with ImageJ through super–resolution radial fluctuations, Nat. Commun., 7, 12471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Culley, S., Albrecht, D., Jacobs, C., Pereira, P. M., Leterrier, C., Mercer, J., and Henriques, R. (2018) Quantitative mapping and minimization of super–resolu–tion optical imaging artifacts, Nat. Methods, 15, 263–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A., and Hell, S. W. (2008) Spherical nanosized focal spot unravels the interior of cells, Nat. Methods, 5, 539–544.

    Article  CAS  PubMed  Google Scholar 

  70. Bohm, U., Hell, S. W., and Schmidt, R. (2016) 4Pi–RESOLFT nanoscopy, Nat. Commun., 7, 10504.

    Article  CAS  PubMed  Google Scholar 

  71. Shtengel, G., Galbraith, J. A., Galbraith, C. G., Lippincott–Schwartz, J., Gillette, J. M., Manley, S., Sougrat, R., Waterman, C. M., Kanchanawong, P., Davidson, M. W., Fetter, R. D., and Hess, H. F. (2009) Interferometric fluorescent super–resolution microscopy resolves 3D cellular ultrastructure, Proc. Natl. Acad. Sci. USA, 106, 3125–3130.

    Article  PubMed  Google Scholar 

  72. Huang, B., Wang, W., Bates, M., and Zhuang, X. (2008) Three–dimensional super–resolution imaging by stochastic optical reconstruction microscopy, Science, 319, 810–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tokunaga, M., Imamoto, N., and Sakata–Sogawa, K. (2008) Highly inclined thin illumination enables clear sin–gle–molecule imaging in cells, Nat. Methods, 5, 159–161.

    Article  CAS  PubMed  Google Scholar 

  74. Gebhardt, J. C. M., Suter, D. M., Roy, R., Zhao, Z. W., Chapman, A. R., Basu, S., Maniatis, T., and Xie, X. S. (2013) Single–molecule imaging of transcription factor binding to DNA in live mammalian cells, Nat. Methods, 10, 421–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, B.–C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., Janetopoulos, C., Wu, X. S., Hammer, J. A., Liu, Z., English, B. P., Mimori–Kiyosue, Y., Romero, D. P., Ritter, A. T., Lippincott–Schwartz, J., Fritz–Laylin, L., Mullins, R. D., Mitchell, D. M., Bembenek, J. N., Reymann, A.–C., Bohme, R., Grill, S. W., Wang, J. T., Seydoux, G., Tulu, U. S., Kiehart, D. P., and Betzig, E. (2014) Lattice light–sheet microscopy: imag–ing molecules to embryos at high spatiotemporal resolu–tion, Science, 346, 1257998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, D., Shao, L., Chen, B.–C., Zhang, X., Zhang, M., Moses, B., Milkie, D. E., Beach, J. R., Hammer, J. A., Pasham, M., Kirchhausen, T., Baird, M. A., Davidson, M. W., Xu, P., and Betzig, E. (2015) ADVANCED IMAGING. Extended–resolution structured illumination imaging of endocytic and cytoskeletal dynamics, Science, 349, aab3500.

    Google Scholar 

  77. Yu, W., Ji, Z., Dong, D., Yang, X., Xiao, Y., Gong, Q., Xi, P., and Shi, K. (2016) Super–resolution deep imaging with hollow Bessel beam STED microscopy: super–resolution deep imaging with GB–STED microscopy, Laser Photonics Rev., 10, 147–152.

    Article  CAS  Google Scholar 

  78. Mishina, N. M., Tyurin–Kuzmin, P. A., Markvicheva, K. N., Vorotnikov, A. V., Tkachuk, V. A., Laketa, V., Schultz, C., Lukyanov, S., and Belousov, V. V. (2011) Does cellular hydrogen peroxide diffuse or act locally? Antioxid. Redox Signal., 14, 1–7.

    Article  CAS  PubMed  Google Scholar 

  79. Mishina, N. M., Mishin, A. S., Belyaev, Y., Bogdanova, E. A., Lukyanov, S., Schultz, C., and Belousov, V. V. (2015) Live–cell STED microscopy with genetically encoded biosensor, Nano Lett., 15, 2928–2932.

    Article  CAS  PubMed  Google Scholar 

  80. Richardson, D. S., Gregor, C., Winter, F. R., Urban, N. T., Sahl, S. J., Willig, K. I., and Hell, S. W. (2017) SRpHi ratiometric pH biosensors for super–resolution microscopy, Nat. Commun., 8, 577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Halabi, E. A., Thiel, Z., Trapp, N., Pinotsi, D., and Rivera–Fuentes, P. (2017) A photoactivatable probe for super–resolution imaging of enzymatic activity in live cells, J. Am. Chem. Soc., 139, 13200–13207.

    Article  CAS  PubMed  Google Scholar 

  82. Nickerson, A., Huang, T., Lin, L.–J., and Nan, X. (2014) Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC–PALM) for nanoscale imaging of protein–protein interactions in cells, PLoS One, 9, e100589.

    Book  Google Scholar 

  83. Liu, Z., Xing, D., Su, Q. P., Zhu, Y., Zhang, J., Kong, X., Xue, B., Wang, S., Sun, H., Tao, Y., and Sun, Y. (2014) Super–resolution imaging and tracking of protein–protein interactions in sub–diffraction cellular space, Nat. Commun., 5, 4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu, K., Zhong, G., and Zhuang, X. (2012) Actin, spectrin, and associated proteins form a periodic cytoskeletal struc–ture in axons, Science, 339, 452–456.

    Article  CAS  PubMed  Google Scholar 

  85. D’Este, E., Kamin, D., Gottfert, F., El–Hady, A., and Hell, S. W. (2015) STED nanoscopy reveals the ubiquity of sub–cortical cytoskeleton periodicity in living neurons, Cell Rep., 10, 1246–1251.

    Article  CAS  PubMed  Google Scholar 

  86. He, J., Zhou, R., Wu, Z., Carrasco, M. A., Kurshan, P. T., Farley, J. E., Simon, D. J., Wang, G., Han, B., Hao, J., Heller, E., Freeman, M. R., Shen, K., Maniatis, T., Tessier–Lavigne, M., and Zhuang, X. (2016) Prevalent presence of periodic actin–spectrin–based membrane skeleton in a broad range of neuronal cell types and animal species, Proc. Natl. Acad. Sci. USA, 113, 6029–6034.

    Article  CAS  PubMed  Google Scholar 

  87. Leterrier, C., Potier, J., Caillol, G., Debarnot, C., Rueda Boroni, F., and Dargent, B. (2015) Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold, Cell Rep., 13, 2781–2793.

    Article  CAS  PubMed  Google Scholar 

  88. D’Este, E., Kamin, D., Balzarotti, F., and Hell, S. W. (2016) Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy, Proc. Natl. Acad. Sci. USA, 114, E191–E199.

    Google Scholar 

  89. Nair, D., Hosy, E., Petersen, J. D., Constals, A., Giannone, G., Choquet, D., and Sibarita, J.–B. (2013) Super–resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nan–odomains regulated by PSD95, J. Neurosci., 33, 13204–13224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tang, A.–H., Chen, H., Li, T. P., Metzbower, S. R., MacGillavry, H. D., and Blanpied, T. A. (2016) A trans–synaptic nanocolumn aligns neurotransmitter release to receptors, Nature, 536, 210–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Appelhans, T., Richter, C. P., Wilkens, V., Hess, S. T., Piehler, J., and Busch, K. B. (2012) Nanoscale organiza–tion of mitochondrial microcompartments revealed by combining tracking and localization microscopy, Nano Lett., 12, 610–616.

    Article  CAS  PubMed  Google Scholar 

  92. AbuZineh, K., Joudeh, L. I., Al Alwan, B., Hamdan, S. M., Merzaban, J. S., and Habuchi, S. (2018) Microfluidics–based super–resolution microscopy enables nanoscopic characterization of blood stem cell rolling, Sci. Adv., 4, eaat5304.

    Book  Google Scholar 

  93. Ricci, M. A., Manzo, C., Garcia–Parajo, M. F., Lakadamyali, M., and Cosma, M. P. (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo, Cell, 160, 1145–1158.

    Article  CAS  PubMed  Google Scholar 

  94. Boettiger, A. N., Bintu, B., Moffitt, J. R., Wang, S., Beliveau, B. J., Fudenberg, G., Imakaev, M., Mirny, L. A., Wu, C.–T., and Zhuang, X. (2016) Super–resolution imag–ing reveals distinct chromatin folding for different epige–netic states, Nature, 529, 418–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mishin.

Additional information

Russian Text © A. S. Mishin, K. A. Lukyanov, 2019, published in Uspekhi Biologicheskoi Khimii, 2019, Vol. 59, pp. 39–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishin, A.S., Lukyanov, K.A. Live-Cell Super-resolution Fluorescence Microscopy. Biochemistry Moscow 84 (Suppl 1), 19–31 (2019). https://doi.org/10.1134/S0006297919140025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919140025

Keywords

Navigation