Skip to main content
Log in

Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Focal brain injuries (in particular, stroke and traumatic brain injury) induce with high probability the development of delayed (months, years) cognitive and depressive disturbances which are frequently comorbid. The association of these complications with hippocampal alterations (in spite of the lack of a primary injury of this structure), as well as the lack of a clear dependence between the probability of depression and dementia development and primary damage severity and localization served as the basis for a new hypothesis on the distant hippocampal damage as a key link in the pathogenesis of cognitive and psychiatric disturbances. According to this hypothesis, the excess of corticosteroids secreted after a focal brain damage, in particular in patients with abnormal stress-response due to hypothalamic-pituitary-adrenal axis (HPAA) dysfunction, interacts with corticosteroid receptors in the hippocampus inducing signaling pathways which stimulate neuroinflammation and subsequent events including disturbances in neurogenesis and hippocampal neurodegeneration. In this article, the molecular and cellular mechanisms associated with the regulatory role of the HPAA and multiple functions of brain corticosteroid receptors in the hippocampus are analyzed. Functional and structural damage to the hippocampus, a brain region selectively vulnerable to external factors and responding to them by increased cytokine secretion, forms the basis for cognitive function disturbances and psychopathology development. This concept is confirmed by our own experimental data, results of other groups and by prospective clinical studies of post-stroke complications. Clinically relevant biochemical approaches to predict the risks and probability of post-stroke/post-trauma cognitive and depressive disturbances are suggested using the evaluation of biochemical markers of patients’ individual stress-response. Pathogenetically justified ways for preventing these consequences of focal brain damage are proposed by targeting key molecular mechanisms underlying hippocampal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACTH:

adrenocorticotropic hormone

Aβ:

amyloid β

AD:

Alzheimer’s disease

BDNF:

brain derived neurotrophic factor

CNS:

central nervous system

CRH:

corticotropin-releasing hormone

CS:

cortisosteroid

GR:

glucocorticoid receptor

HPAA:

hypothalamic-pituitary-adrenocortical axis

11HSD:

11β-hydroxysteroid dehydrogenase

IL:

interleukin

MCI:

mild cognitive impairment

MR:

mineralocorticoid receptor

PSD:

poststroke depression

TNF-α:

tumor necrosis factor-α

TrkB:

tropomyosin receptor kinase B

References

  1. McEwen, B. S. (1996) Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors, Cell. Mol. Neurobiol., 16, 103–116.

    Article  CAS  PubMed  Google Scholar 

  2. De Kloet, E. R., Han, F., and Meijer, O. C. (2008) From the stalk to down under about brain glucocorticoid receptors, stress and development, Neurochem. Res., 33, 637–642.

    Article  CAS  PubMed  Google Scholar 

  3. Uchoa, E. T., Aguilera, G., Herman, J. P., Fiedler, J. L., Deak, T., and de Sousa, M. B. (2014) Novel aspects of glucocorticoid actions, J. Neuroendocrinol., 26, 557–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gulyaeva, N. V. (2019) Functional neurochemistry of the ventral and dorsal hippocampus: stress, depression, dementia and remote hippocampal damage, Neurochem. Res., 44, 1306–1322.

    Article  CAS  PubMed  Google Scholar 

  5. De Kloet, E. R. (2000) Stress in the brain, Eur. J. Pharmacol., 405, 187–198.

    Article  CAS  PubMed  Google Scholar 

  6. De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., and Joels, M. (1998) Brain corticosteroid receptor balance in health and disease, Endocr. Rev., 19, 269–301.

    CAS  PubMed  Google Scholar 

  7. Meijer, O. C., Buurstede, J. C., and Schaaf, M. J. M. (2019) Corticosteroid receptors in the brain: transcriptional mechanisms for specificity and context-dependent effects, Cell. Mol. Neurobiol., 39, 539–549.

    Article  CAS  PubMed  Google Scholar 

  8. Joels, M. (2018) Corticosteroids and the brain, J. Endocrinol., 238, R121–R130.

    Article  CAS  PubMed  Google Scholar 

  9. Groeneweg, F. L., Karst, H., de Kloet, E. R., and Joels, M. (2011) Rapid non-genomic effects of corticosteroids and their role in the central stress response, J. Endocrinol., 209, 153–167.

    Article  CAS  PubMed  Google Scholar 

  10. Nishi, M., and Kawata, M. (2006) Brain corticosteroid receptor dynamics and trafficking: implications from live cell imaging, Neuroscientist, 12, 119–133.

    Article  CAS  PubMed  Google Scholar 

  11. De Kloet, E. R., Oitzl, M. S., and Schobitz, B. (1994) Cytokines and the brain corticosteroid receptor balance: relevance to pathophysiology of neuroendocrine-immune communication, Psychoneuroendocrinology, 19, 121–134.

    Article  CAS  PubMed  Google Scholar 

  12. De Kloet, E. R., Meijer, O. C., de Nicola, A. F., de Rijk, R. H., and Joels, M. (2018) Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation, Front. Neuroendocrinol., 49, 124–145.

    Article  CAS  PubMed  Google Scholar 

  13. Murakami, G., Hojo, Y., Kato, A., Komatsuzaki, Y., Horie, S., Soma, M., Kim, J., and Kawato, S. (2018) Rapid nongenomic modulation by neurosteroids of dendritic spines in the hippocampus: androgen, oestrogen and corticosteroid, J. Neuroendocrinol., 30, doi: https://doi.org/10.1111/jne.12561.

    Article  CAS  Google Scholar 

  14. Giordano, R., Pellegrino, M., Picu, A., Bonelli, L., Balbo, M., Berardelli, R., Lanfranco, F., Ghigo, E., and Arvat, E. (2006) Neuroregulation of the hypothalamus-pituitary-adrenal (HPA) axis in humans: effects of GABA-, miner-alocorticoid-, and GH-secretagogue-receptor modulation, Sci. World J., 6, 1–11.

    Article  CAS  Google Scholar 

  15. Joels, M., and de Kloet, E. R. (2017) 30 years of the min-eralocorticoid receptor: the brain mineralocorticoid receptor: a saga in three episodes, J. Endocrinol., 234, T49–T66.

    Article  CAS  PubMed  Google Scholar 

  16. Le Menuet, D., and Lombes, M. (2014) The neuronal min-eralocorticoid receptor: from cell survival to neurogenesis, Steroids, 91, 11–19.

    Article  CAS  PubMed  Google Scholar 

  17. Odermatt, A., and Kratschmar, D. V. (2012) Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: an overview, Mol. Cell. Endocrinol., 350, 168–186.

    Article  CAS  PubMed  Google Scholar 

  18. Kellendonk, C., Gass, P., Kretz, O., Schutz, G., and Tronche, F. (2002) Corticosteroid receptors in the brain: gene targeting studies, Brain Res. Bull., 57, 73–83.

    Article  CAS  PubMed  Google Scholar 

  19. Saaltink, D. J., and Vreugdenhil, E. (2014) Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell. Mol. Life Sci., 71, 2499–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitellius, G., Trabado, S., Bouligand, J., Delemer, B., and Lombes, M. (2018) Pathophysiology of glucocorticoid signaling, Ann. Endocrinol. (Paris), 79, 98–106.

    Article  Google Scholar 

  21. Van Weert, L. T. C. M., Buurstede, J. C., Sips, H. C. M., Mol, I. M., Puri, T., Damsteegt, R., Roozendaal, B., Sarabdjitsingh, R. A., and Meijer, O. C. (2019) Mechanistic insights in NeuroD potentiation of mineralocorticoid receptor signaling, Int. J. Mol. Sci., 20, doi: https://doi.org/10.3390/ijms20071575.

    Article  PubMed Central  Google Scholar 

  22. Joels, M., and Karst, H. (2012) Corticosteroid effects on calcium signaling in limbic neurons, Cell. Calcium, 51, 277–283.

    Article  CAS  PubMed  Google Scholar 

  23. Lapp, H. E., Bartlett, A. A., and Hunter, R. G. (2019) Stress and glucocorticoid receptor regulation of mitochondrial gene expression, J. Mol. Endocrinol., 62, R121–R128.

    Article  CAS  PubMed  Google Scholar 

  24. Reul, J. M. (2014) Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways, Front. Psychiatry, 5, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mifsud, K. R., Gutierrez-Mecinas, M., Trollope, A. F., Collins, A., Saunderson, E. A., and Reul, J. M. (2011) Epigenetic mechanisms in stress and adaptation, Brain Behav. Immun., 25, 1305–1315.

    Article  CAS  PubMed  Google Scholar 

  26. Bennett, M. R., and Lagopoulos, J. (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression, Prog. Neurobiol., 112, 80–99.

    Article  CAS  PubMed  Google Scholar 

  27. Gulyaeva, N. V. (2017) Interplay between brain BDNF and glutamatergic systems: a brief state of the evidence and association with the pathogenesis of depression, Biochemistry (Moscow), 82, 301–307.

    Article  CAS  Google Scholar 

  28. Leal, G., Bramham, C. R., and Duarte, C. B. (2017) BDNF and hippocampal synaptic plasticity, Vitam. Horm., 104, 153–195.

    Article  CAS  PubMed  Google Scholar 

  29. Suri, D., and Vaidya, V. A. (2013) Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity, Neuroscience, 239, 196–213.

    Article  CAS  PubMed  Google Scholar 

  30. Linz, R., Puhlmann, L. M. C., Apostolakou, F., Mantzou, E., Papassotiriou, I., Chrousos, G. P., Engert, V., and Singer, T. (2019) Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training, Neuropsychopharmacology, 44, 1797–1804, doi: https://doi.org/10.1038/s41386-019-0391-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daskalakis, N. P., De Kloet, E. R., Yehuda, R., Malaspina, D., and Kranz, T. M. (2015) Early life stress effects on glucocorticoid—BDNF interplay in the hippocampus, Front. Mol. Neurosci., 8, 68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Finsterwald, C., and Alberini, C. M. (2014) Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies, Neurobiol. Learn. Mem., 112, 17–29.

    Article  CAS  PubMed  Google Scholar 

  33. Sapolsky, R. M. (1990) Glucocorticoids, hippocampal damage and the glutamatergic synapse, Prog. Brain Res., 86, 13–23.

    Article  CAS  PubMed  Google Scholar 

  34. Popoli, M., Yan, Z., McEwen, B. S., and Sanacora, G. (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission, Nat. Rev. Neurosci., 13, 22–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chaouloff, F., and Groc, L. (2011) Temporal modulation of hippocampal excitatory transmission by corticosteroids and stress, Front. Neuroendocrinol., 32, 25–42.

    Article  CAS  PubMed  Google Scholar 

  36. Goujon, E., Lay E. S., Parnet, P., and Dantzer, R. (1997) Regulation of cytokine gene expression in the central nervous system by glucocorticoids: mechanisms and functional consequences, Psychoneuroendocrinology, 22(Suppl. 1), S75–S80.

    Article  CAS  PubMed  Google Scholar 

  37. Duque Ede, A., and Munhoz, C. D. (2016) The proinflammatory effects of glucocorticoids in the brain, Front. Endocrinol. (Lausanne), 7, 78.

    Google Scholar 

  38. Pariante, C. M. (2017) Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation, Eur. Neuropsychopharmacol., 27, 554–559.

    Article  CAS  PubMed  Google Scholar 

  39. Walker, F. R., Nilsson, M., and Jones, K. (2013) Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function, Curr. Drug Targets, 14, 1262–1276.

    Article  CAS  PubMed  Google Scholar 

  40. Gadek-Michalska, A., Tadeusz, J., Rachwalska, P., and Bugajski, J. (2013) Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems, Pharmacol. Rep., 65, 1655–1662.

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, J. D., Barnard, D. F., Kulp, A. C., and Mehta, D. M. (2019) Neuroendocrine regulation of brain cytokines after psychological stress, J. Endocr. Soc., 3, 1302–1320.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Deak, T., Quinn, M., Cidlowski, J. A., Victoria, N. C., Murphy, A. Z., and Sheridan, J. F. (2015). Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease, Stress, 18, 367–380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bekhbat, M., Rowson, S. A., and Neigh, G. N. (2017) Checks and balances: the glucocorticoid receptor and NFkB in good times and bad, Front. Neuroendocrinol., 46, 15–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Kloet, E. R., and Joels, M. (2017) Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation, Physiol. Behav., 178, 13–20.

    Article  CAS  PubMed  Google Scholar 

  45. Brocca, M. E., Pietranera, L., de Kloet, E. R., and De Nicola, A. F. (2019) Mineralocorticoid receptors, neuroinflammation and hypertensive encephalopathy, Cell. Mol. Neurobiol., 39, 483–492.

    Article  CAS  PubMed  Google Scholar 

  46. Frank, M. G., Weber, M. D., Watkins, L. R., and Maier, S. F. (2015) Stress sounds the alarmin: the role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming, Brain Behav. Immun., 48, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pearson-Leary, J., Osborne, D. M., and McNay, E. C. (2016) Role of glia in stress-induced enhancement and impairment of memory, Front. Integr. Neurosci., 9, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Van Olst, L., Bielefeld, P., Fitzsimons, C. P., de Vries, H. E., and Schouten, M. (2018) Glucocorticoid-mediated modulation of morphological changes associated with aging in microglia, Aging Cell, 17, e12790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. McEwen, B. S. (1997) Possible mechanisms for atrophy of the human hippocampus, Mol. Psychiatry, 2, 255–262.

    Article  CAS  PubMed  Google Scholar 

  50. Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F., Sousa, N., and Sotiropoulos, I. (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration, Neural Plast., 2016, 6391686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Libro, R., Bramanti, P., and Mazzon, E. (2017) Endogenous glucocorticoids: role in the etiopathogenesis of Alzheimer’s disease, Neuro Endocrinol. Lett., 38, 1–12.

    CAS  PubMed  Google Scholar 

  52. Vyas, S., and Maatouk, L. (2013) Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes, CNS Neurol. Disord. Drug Targets, 12, 1175–1193.

    CAS  PubMed  Google Scholar 

  53. Ouanes, S., and Popp, J. (2019) High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature, Front. Aging Neurosci., 11, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paul, S., Jeon, W. K., Bizon, J. L., and Han, J. S. (2015) Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment, Front. Aging Neurosci., 7, 43.

    PubMed  PubMed Central  Google Scholar 

  55. Kootar, S., Frandemiche, M. L., Dhib, G., Mouska, X., Lorivel, T., Poupon-Silvestre, G., Hunt, H., Tronche, F., Bethus, I., Barik, J., and Marie, H. (2018) Identification of an acute functional cross-talk between amyloid-β and glucocorticoid receptors at hippocampal excitatory synapses, Neurobiol. Dis., 118, 117–128.

    Article  CAS  PubMed  Google Scholar 

  56. Bisht, K., Sharma, K., and Tremblay, M. E. (2018) Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress, Neurobiol. Stress, 9, 9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pomara, N., Greenberg, W. M., Branford, M. D., and Doraiswamy, P. M. (2003) Therapeutic implications of HPA axis abnormalities in Alzheimer’s disease: review and update, Psychopharmacol. Bull., 37, 120–134.

    PubMed  Google Scholar 

  58. Numakawa, T., Odaka, H., and Adachi, N. (2017) Actions of brain-derived neurotrophic factor and glucocorticoid stress in neurogenesis, Int. J. Mol. Sci., 18, E2312, doi: https://doi.org/10.3390/ijms18112312.

    Article  PubMed  CAS  Google Scholar 

  59. Fitzsimons, C. P., Herbert, J., Schouten, M., Meijer, O. C., Lucassen, P. J., and Lightman, S. (2016) Circadian and ultradian glucocorticoid rhythmicity: implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis, Front. Neuroendocrinol., 41, 44–58.

    Article  CAS  PubMed  Google Scholar 

  60. Lucassen, P. J., Oomen, C. A., Naninck, E. F., Fitzsimons, C. P., van Dam, A. M., Czeh, B., and Korosi, A. (2015) Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation, Cold Spring Harb. Perspect. Biol., 7, a021303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schoenfeld, T. J., and Gould, E. (2012). Stress, stress hormones, and adult neurogenesis, Exp. Neurol., 233, 12–21.

    Article  CAS  PubMed  Google Scholar 

  62. Lupien, S. J., and Lepage, M. (2001) Stress, memory, and the hippocampus: can’t live with it, can’t live without it, Behav. Brain Res., 127, 137–158.

    Article  CAS  PubMed  Google Scholar 

  63. Herman, J. P., Ostrander, M. M., Mueller, N. K., and Figueiredo, H. (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis, Prog. Neuropsychopharmacol. Biol. Psychiatry, 29, 1201–1213.

    Article  CAS  PubMed  Google Scholar 

  64. Joels, M., Pasricha, N., and Karst, H. (2013) The interplay between rapid and slow corticosteroid actions in brain, Eur. J. Pharmacol., 719, 44–52.

    Article  CAS  PubMed  Google Scholar 

  65. Zunszain, P. A., Anacker, C., Cattaneo, A., Carvalho, L. A., and Pariante, C. M. (2011) Glucocorticoids, cytokines and brain abnormalities in depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 722–729.

    Article  CAS  PubMed  Google Scholar 

  66. Leonard, B. (2000) Stress, depression and the activation of the immune system, World J. Biol. Psychiatry, 1, 17–25.

    Article  CAS  PubMed  Google Scholar 

  67. Oglodek, E., Szota, A., Just, M., Mos, D., and Araszkiewicz, A. (2014) The role of the neuroendocrine and immune systems in the pathogenesis of depression, Pharmacol. Rep., 66, 776–781.

    Article  CAS  PubMed  Google Scholar 

  68. Silverman, M. N., and Sternberg, E. M. (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction, Ann. N. Y. Acad. Sci., 1261, 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leonard, B. E. (2018) Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr., 30, 1–16.

    Article  PubMed  Google Scholar 

  70. Makhija, K., and Karunakaran, S. (2013) The role of inflammatory cytokines on the etiopathogenesis of depression, Aust. N. Z. J. Psychiatry, 47, 828–839.

    Article  PubMed  Google Scholar 

  71. Bauer, M. E., and Teixeira, A. L. (2019) Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci., 437, 57–67.

    Article  CAS  Google Scholar 

  72. Maes, M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., Perini, G., Kubera, M., Bob, P., Lerer, B., and Maj, M. (2009) The inflammatory and neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression, Metab. Brain Dis., 24, 27–53.

    Article  CAS  PubMed  Google Scholar 

  73. Kim, Y. K., Na, K. S., Myint, A. M., and Leonard, B. E. (2016) The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 64, 277–284.

    Article  CAS  PubMed  Google Scholar 

  74. Barnard, D. F., Gabella, K. M., Kulp, A. C., Parker, A. D., Dugan, P. B., and Johnson, J. D. (2019) Sex differences in the regulation of brain IL-1β in response to chronic stress, Psychoneuroendocrinology, 103, 203–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cattaneo, A., and Riva, M. A. (2016) Stress-induced mechanisms in mental illness: a role for glucocorticoid signaling, J. Steroid Biochem. Mol. Biol., 160, 169–174.

    Article  CAS  PubMed  Google Scholar 

  76. Zimmermann, C. A., Arloth, J., Santarelli, S., Loschner, A., Webe, P., Schmidt, M. V., Spengler, D., and Binder, E. B. (2019) Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes, Transl. Psychiatry, 9, 41, doi: https://doi.org/10.1038/s41398-019-0373-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gray, J. D., Kogan, J. F., Marrocco, J., and McEwen, B. S. (2017) Genomic and epigenomic mechanisms of glucocorticoids in the brain, Nat. Rev. Endocrinol., 13, 661–673.

    Article  CAS  PubMed  Google Scholar 

  78. Sousa, N., and Almeida, O. F. (2002) Corticosteroids: sculptors of the hippocampal formation, Rev. Neurosci., 13, 59–84.

    Article  CAS  PubMed  Google Scholar 

  79. Chen, J., Wang, Z. Z., Zhang, S., Chu, S. F., Mou, Z., and Chen, N. H. (2019) The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors, Behav. Brain Res., 362, 288–298.

    Article  CAS  PubMed  Google Scholar 

  80. Li, Y., Qin, J., Yan, J., Zhang, N., Xu, Y., Zhu, Y., Sheng, L., Zhu, X., and Ju, S. (2018) Differences of physical vs. psychological stress: evidences from glucocorticoid receptor expression, hippocampal subfields injury, and behavioral abnormalities, Brain Imaging Behav., doi: https://doi.org/10.1007/s11682-018-9956-3 [Epub ahead of print].

  81. Leonard, B. E. (2007) Inflammation, depression and dementia: are they connected? Neurochem. Res., 32, 1749–1756.

    Article  CAS  PubMed  Google Scholar 

  82. Herbert, J., and Lucassen, P. J. (2016) Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis — what do we need to know? Front. Neuroendocrinol., 41, 153–171.

    Article  CAS  PubMed  Google Scholar 

  83. Kino, T. (2015) Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders, Front. Physiol., 6, 230.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Levada, O. A., and Troyan, A. S. (2018) Poststroke depression biomarkers: a narrative review, Front. Neurol., 16, 577.

    Article  Google Scholar 

  85. Ben Assayag, E., Korczyn, A. D., Giladi, N., Goldbourt, U., Berliner, A. S., Shenhar-Tsarfaty, S., Kliper, E., Hallevi, H., Shopin, L., Hendler, T., Baashat, D. B., Aizenstein, O., Soreq, H., Katz, N., Solomon, Z., Mike, A., Usher, S., Hausdorff, J. M., Auriel, E., Shapira, I., and Bornstein, N. M. (2012) Predictors for poststroke outcomes: the Tel Aviv Brain Acute Stroke Cohort (TABASCO) study protocol, Int. J. Stroke, 7, 341–347.

    Article  PubMed  Google Scholar 

  86. Molad, J., Hallevi, H., Korczyn, A. D., Kliper, E., Auriel, E., Bornstein, N. M., and Ben Assayag, E. (2019) Vascular and neurodegenerative markers for the prediction of post-stroke cognitive impairment: results from the TABASCO study, J. Alzheimer’s Dis., 70, 889–898, doi: https://doi.org/10.3233/JAD-190339.

    Article  CAS  Google Scholar 

  87. Molad, J., Ben-Assayag, E., Korczyn, A. D., Kliper, E., Bornstein, N. M., Hallevi, H., and Auriel, E. (2018) Clinical and radiological determinants of transient symptoms associated with infarction (TSI), J. Neurol. Sci., 390, 195–199.

    Article  CAS  PubMed  Google Scholar 

  88. Kliper, E., Ben Assayag, E., Tarrasch, R., Artzi, M., Korczyn, A. D., Shenhar-Tsarfaty, S., Aizenstein, O., Hallevi, H., Mike, A., Shopin, L., Bornstein, N. M., and Ben Bashat, D. (2014) Cognitive state following stroke: the predominant role of preexisting white matter lesions, PLoS One, 9, e105461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ben Assayag, E., Tene, O., Korczyn, A. D., Shopin, L., Auriel, E., Molad, J., Hallevi, H., Kirschbaum, C., Bornstein, N. M., Shenhar-Tsarfaty, S., Kliper, E., and Stalder, T. (2017) High hair cortisol concentrations predict worse cognitive outcome after stroke: results from the TABASCO prospective cohort study, Psychoneuroendocrinology, 82, 133–139.

    Article  CAS  PubMed  Google Scholar 

  90. Tene, O., Hallevi, H., Korczyn, A. D., Shopin, L., Molad, J., Kirschbaum, C., Bornstein, N. M., Shenhar-Tsarfaty, S., Kliper, E., Auriel, E., Usher, S., Stalder, T., and Ben Assayag, E. (2018) The price of stress: high bedtime salivary cortisol levels are associated with brain atrophy and cognitive decline in stroke survivors. Results from the TABASCO prospective cohort study, J. Alzheimer’s Dis., 65, 1365–1375.

    Article  CAS  Google Scholar 

  91. Tene, O., Shenhar-Tsarfaty, S., Korczyn, A. D., Kliper, E., Hallevi, H., Shopin, L., Auriel, E., Mike, A., Bornstein, N. M., and Assayag, E. B. (2016) Depressive symptoms following stroke and transient ischemic attack: is it time for a more intensive treatment approach? Results from the TABASCO cohort study, J. Clin. Psychiatry, 77, 673–680.

    Article  PubMed  Google Scholar 

  92. Kliper, E., Ben Assayag, E., Korczyn, A. D., Auriel, E., Shopin, L., Hallevi, H., Shenhar-Tsarfaty, S., Mike, A., Artzi, M., Klovatch, I., Bornstein, N. M., and Ben Bashat, D. (2016) Cognitive state following mild stroke: a matter of hippocampal mean diffusivity, Hippocampus, 26, 161–169.

    Article  PubMed  Google Scholar 

  93. Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., and Myers, B. (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response, Compr. Physiol., 6, 603–621.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pochigaeva, K., Druzhkova, T., Yakovlev, A., Onufriev, M., Grishkina, M., Chepelev, A., Guekht, A., and Gulyaeva, N. (2017) Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activity in female patients with major depressive disorder, Metab. Brain Dis., 32, 577–583.

    Article  CAS  PubMed  Google Scholar 

  95. Druzhkova, T., Pochigaeva, K., Yakovlev, A., Kazimirova, E., Grishkina, M., Chepelev, A., Guekht, A., and Gulyaeva, N. (2019) Acute stress response to a cognitive task in patients with major depressive disorder: potential metabolic and proinflammatory biomarkers, Metab. Brain Dis., 34, 621–629.

    Article  CAS  PubMed  Google Scholar 

  96. Joels, M., Karst, H., and Sarabdjitsingh, R. A. (2018) The stressed brain of humans and rodents, Acta Physiol. (Oxf.), 223, e13066.

    Article  CAS  Google Scholar 

  97. De Kloet, E. R., Otte, C., Kumsta, R., Kok, L., Hillegers, M. H., Hasselmann, H., Kliegel, D., and Joels, M. (2016) Stress and depression: a crucial role of the mineralocorticoid receptor, J. Neuroendocrinol., 28, doi: https://doi.org/10.1111/jne.12379.

  98. Martocchia, A., Curto, M., Toussan, L., Stefanelli, M., and Falaschi, P. (2011) Pharmacological strategies against glucocorticoid-mediated brain damage during chronic disorders, Recent Pat. CNS Drug Discov., 6, 196–204.

    Article  CAS  PubMed  Google Scholar 

  99. Muller, M., Holsboer, F., and Keck, M. E. (2002) Genetic modification of corticosteroid receptor signaling: novel insights into pathophysiology and treatment strategies of human affective disorders, Neuropeptides, 36, 117–131.

    Article  CAS  PubMed  Google Scholar 

  100. Sutanto, W., and de Kloet, E. R. (1991) Mineralocorticoid receptor ligands: biochemical, pharmacological, and clinical aspects, Med. Res. Rev., 11, 617–639.

    Article  CAS  PubMed  Google Scholar 

  101. Gomez-Sanchez, E. P. (2016) Third-generation mineralocorticoid receptor antagonists: why do we need a fourth? J. Cardiovasc. Pharmacol., 67, 26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, W., Liu, L., Yang, X., Gao, H., Tang, Q. K., Yin, L. Y., Yin, X. Y., Hao, J. R., Geng, D. Q., and Gao, C. (2019) Ketamine improved depressive-like behaviors via hippocampal glucocorticoid receptor in chronic stress induced-susceptible mice, Behav. Brain Res., 364, 75–84.

    Article  CAS  PubMed  Google Scholar 

  103. Scheimann, J. R., Mahbod, P., Morano, R., Frantz, L., Packard, B., Campbell, K., and Herman, J. P. (2018) Deletion of glucocorticoid receptors in forebrain GABAergic neurons alters acute stress responding and passive avoidance behavior in female mice, Front. Behav. Neurosci., 12, 325.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stepanichev, M., Onufriev, M., Aniol, V., Freiman, S., Brandstaetter, H., Winter, S., Lazareva, N., Guekht, A., and Gulyaeva, N. (2017) Effects of Cerebrolysin on nerve growth factor system in the aging rat brain, Restor. Neurol. Neurosci., 35, 571–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Joels, M. (2008) Functional actions of corticosteroids in the hippocampus, Eur. J. Pharmacol., 583, 312–321.

    Article  CAS  PubMed  Google Scholar 

  106. Gulyaeva, N. V. (2017) Molecular mechanisms of neuroplasticity: an expanding universe, Biochemistry (Moscow), 82, 237–242.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-00-00125 (stress, depression), and the Russian Academy of Sciences Presidium Program “Fundamental bases of physiological adaptation technologies” (remote hippocampal damage).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gulyaeva.

Additional information

Conflict of interest

The author declares no conflict of interest.

Compliance with ethical norms

This article does not contain any studies with human participants or animals performed by the author.

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 11, pp. 1622–1648.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulyaeva, N.V. Biochemical Mechanisms and Translational Relevance of Hippocampal Vulnerability to Distant Focal Brain Injury: The Price of Stress Response. Biochemistry Moscow 84, 1306–1328 (2019). https://doi.org/10.1134/S0006297919110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919110087

Keywords

Navigation