Skip to main content
Log in

Modern approaches for identification of modified nucleotides in RNA

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review considers approaches for detection of modified monomers in the RNA structure of living organisms. Recently, some data on dynamic alterations in the pool of modifications of the key RNA species that depend on external factors affecting the cells and physiological conditions of the whole organism have been accumulated. The recent studies have presented experimental data on relationship between the mechanisms of formation of modified/minor nucleotides of RNA in mammalian cells and the development of various pathologies. The development of novel methods for detection of chemical modifications of RNA nucleotides in the cells of living organisms and accumulation of knowledge on the contribution of modified monomers to metabolism and functioning of individual RNA species establish the basis for creation of novel diagnostic and therapeutic approaches. This review includes a short description of routine methods for determination of modified nucleotides in RNA and considers in detail modern approaches that enable not only detection but also quantitative assessment of the modification level of various nucleotides in individual RNA species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMC:

N-cyclohexyl-N′-(2-(4-methyl)morpholinoethyl)carbodiimide tosylate

DMS:

dimethyl sulfate

ds:

double-stranded

HTS:

high-throughput sequencing

I:

inosine

1M7:

1-methyl-7-nitroisatoic anhydride

m5C:

5-methylcytidine

m6A:

N6-methyladenosine

mN:

nucleotide modified at the base

MS:

mass spectrometry

Nm:

nucleotide methylated at the 2′-O-position

NMIA:

N-methylisatoic anhydride

2′-O-Me:

2′-O-methyl group

pre-mRNA:

precursor of mRNA

RNP:

ribonucleoprotein

RT:

reverse transcription

RT-PCR:

reverse transcription followed by polymerase chain reaction

snRNA:

small nuclear RNA

snoRNA:

small nucleolar RNA

ss:

single-stranded

Ψ:

pseudouridine

References

  1. Rozenski, J., Crain, P. F., and McCloskey, J. A. (1999) The RNA Modification Database: 1999 update, Nucleic Acids Res., 27, 196–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piekna-Przybylska, D., Decatur, W. A., and Fournier, M. J. (2008) The 3D rRNA modification maps database: with interactive tools for ribosome analysis, Nucleic Acids Res., 36, D178–D183.

    Article  CAS  PubMed  Google Scholar 

  3. Machnicka, M. A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K. M., Helm, M., Bujnicki, J. M., and Grosjean, H. (2013) MODOMICS: a database of RNA modification pathways–2013 update, Nucleic Acids Res., 41, D262–267.

    Article  CAS  PubMed  Google Scholar 

  4. Helm, M. (2006) Post-transcriptional nucleotide modification and alternative folding of RNA, Nucleic Acids Res., 34, 721–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawai, G., Yamamoto, Y., Kamimura, T., Masegi, T., Sekine, M., Hata, T., Iimori, T., Watanabe, T., Miyazawa, T., and Yokoyama, S. (1992) Conformational rigidity of specific pyrimidine residues in tRNA arises from posttran-scriptional modifications that enhance steric interaction between the base and the 2′-hydroxyl group, Biochemistry, 31, 1040–1046.

    Article  CAS  PubMed  Google Scholar 

  6. Yarian, C. S., Basti, M. M., Cain, R. J., Ansari, G., Guenther, R. H., Sochacka, E., Czerwinska, G., Malkiewicz, A., and Agris, P. F. (1999) Structural and func-tional roles of the N1-and N3-protons of psi at tRNA’s position 39, Nucleic Acids Res., 27, 3543–3549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desaulniers, J. P., Chang, Y. C., Aduri, R., Abeysirigunawardena, S. C., SantaLucia, J., Jr., and Chow, C. S. (2008) Pseudouridines in rRNA helix 69 play a role in loop stacking interactions, Org. Biomol. Chem., 6, 3892–3895.

    Article  CAS  PubMed  Google Scholar 

  8. Charette, M., and Gray, M. W. (2000) Pseudouridine in RNA: what, where, how, and why, IUBMB Life, 49, 341–351.

    Article  CAS  PubMed  Google Scholar 

  9. Hudson, G. A., Bloomingdale, R. J., and Znosko, B. M. (2013) Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides, RNA, 19, 1474–1482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kierzek, E., Malgowska, M., Lisowiec, J., Turner, D. H., Gdaniec, Z., and Kierzek, R. (2014) The contribution of pseudouridine to stabilities and structure of RNAs, Nucleic Acids Res., 42, 3492–3501.

    Article  CAS  PubMed  Google Scholar 

  11. Kimura, S., and Suzuki, T. (2010) Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA, Nucleic Acids Res., 38, 1341–1352.

    Article  CAS  PubMed  Google Scholar 

  12. Helm, M., Giege, R., and Florentz, C. (1999) A Watson–Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys, Biochemistry, 38, 13338–13346.

    Article  CAS  PubMed  Google Scholar 

  13. Ishitani, R., Yokoyama, S., and Nureki, O. (2008) Structure, dynamics, and function of RNA modification enzymes, Curr. Opin. Struct. Biol., 18, 330–339.

    Article  CAS  PubMed  Google Scholar 

  14. Byrne, R. T., Waterman, D. G., and Antson, A. A. (2009) in DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution: Enzyme–RNA Substrate Recognition in RNA-Modifying Enzymes (Grosjean, H., ed.) Landes Bioscience, Austin, pp. 303–327.

  15. Kiss-Laszlo, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., and Kiss, T. (1996) Site-specific ribose methy-lation of preribosomal RNA: a novel function for small nucleolar RNAs, Cell, 85, 1077–1088.

    Article  CAS  PubMed  Google Scholar 

  16. Cavaille, J., Nicoloso, M., and Bachellerie, J. P. (1996) Targeted ribose methylation of RNA in vivo directed by tai-lored antisense RNA guides, Nature, 383, 732–735.

    Article  CAS  PubMed  Google Scholar 

  17. Ganot, P., Bortolin, M. L., and Kiss, T. (1997) Site-specif-ic pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs, Cell, 89, 799–809.

    Article  CAS  PubMed  Google Scholar 

  18. Makarova, J. A., Ivanova, S. M., Tonevitsky, A. G., and Grigoriev, A. I. (2013) New functions of small nucleolar RNAs, Biochemistry (Moscow), 78, 638–650.

    Article  CAS  Google Scholar 

  19. Dupuis-Sandoval, F., Poirier, M., and Scott, M. S. (2015) The emerging landscape of small nucleolar RNAs in cell biology, Wiley Interdiscip. Rev. RNA, 6, 381–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shubina, M. Y., Musinova, Y. R., and Sheval, E. V. (2016) Nucleolar methyltransferase fibrillarin: evolution of struc-ture and functions, Biochemistry (Moscow), 81, 941–950.

    Article  CAS  Google Scholar 

  21. Omer, A. D., Ziesche, S., Ebhardt, H., and Dennis, P. P. (2002) In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex, Proc. Natl. Acad. Sci. USA, 99, 5289–5294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johansen, S. K., Maus, C. E., Plikaytis, B. B., and Douthwaite, S. (2006) Capreomycin binds across the ribo-somal subunit interface using tlyA-encoded 2′-O-methyla-tions in 16S and 23S rRNAs, Mol. Cell, 23, 173–182.

    Article  CAS  PubMed  Google Scholar 

  23. Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., and Ochi, K. (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacte-ria, Mol. Microbiol., 63, 1096–1106.

    Article  CAS  PubMed  Google Scholar 

  24. Esguerra, J., Warringer, J., and Blomberg, A. (2008) Functional importance of individual rRNA 2′-O-ribose methylations revealed by high-resolution phenotyping, RNA, 14, 649–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karijolich, J., and Yu, Y. T. (2010) Spliceosomal snRNA modifications and their function, RNA Biol., 7, 192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jackman, J. E., and Alfonzo, J. D. (2013) Transfer RNA modifications: nature’s combinatorial chemistry play-ground, Wiley Interdiscip. Rev. RNA, 4, 35–48.

    Article  CAS  PubMed  Google Scholar 

  27. Giege, R., Juhling, F., Putz, J., Stadler, P., Sauter, C., and Florentz, C. (2012) Structure of transfer RNAs: similarity and variability, Wiley Interdiscip. Rev. RNA, 3, 37–61.

    Article  CAS  PubMed  Google Scholar 

  28. Jenner, L. B., Demeshkina, N., Yusupova, G., and Yusupov, M. (2010) Structural aspects of messenger RNA reading frame maintenance by the ribosome, Nat. Struct. Mol. Biol., 17, 555–560.

    Article  CAS  PubMed  Google Scholar 

  29. Das, G., Thotala, D. K., Kapoor, S., Karunanithi, S., Thakur, S. S., Singh, N. S., and Varshney, U. (2008) Role of 16S ribosomal RNA methylations in translation initia-tion in Escherichia coli, EMBO J., 27, 840–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, B., Liang, X. H., Piekna-Przybylska, D., Liu, Q., and Fournier, M. J. (2008) Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity, RNA Biol., 5, 249–254.

    Article  CAS  PubMed  Google Scholar 

  31. Liang, X. H., Liu, Q., and Fournier, M. J. (2009) Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA process-ing, RNA, 15, 1716–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sonenberg, N., and Hinnebusch, A. G. (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets, Cell, 136, 731–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., and Rechavi, G. (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq, Nature, 485, 201–206.

    Article  CAS  PubMed  Google Scholar 

  34. Zinshteyn, B., and Nishikura, K. (2009) Adenosine-to-inosine RNA editing, Wiley Interdiscip. Rev. Syst. Biol. Med., 1, 202–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tomaselli, S., Bonamassa, B., Alisi, A., Nobili, V., Locatelli, F., and Gallo, A. (2013) ADAR enzyme and miRNA story: a nucleotide that can make the difference, Int. J. Mol. Sci., 14, 22796–22816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B. W., Ziebuhr, J., Szretter, K. J., Baker, S. C., Barchet, W., Diamond, M. S., Siddell, S. G., Ludewig, B., and Thiel, V. (2011) Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, Nat. Immunol., 12, 137–143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hull, C. M., and Bevilacqua, P. C. (2016) Discriminating self and non-self by RNA: roles for RNA structure, mis-folding, and modification in regulating the innate immune sensor PKR, Acc. Chem. Res., 49, 1242–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Belin, S., Kindbeiter, K., Hacot, S., Albaret, M. A., Roca-Martinez, J. X., Therizols, G., Grosso, O., and Diaz, J. J. (2010) Uncoupling ribosome biogenesis regulation from RNA polymerase I activity during herpes simplex virus type 1 infection, RNA, 16, 131–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krug, R. M., Morgan, M. A., and Shatkin, A. J. (1976) Influenza viral mRNA contains internal N6-methyladeno-sine and 5′-terminal 7-methylguanosine in cap structures, J. Virol., 20, 45–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T. Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale, M., Jr., Shi, P. Y., and Diamond, M. S. (2010) 2′-O-methylation of the viral mRNA cap evades host restriction by IFIT family members, Nature, 468, 452–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reich, S., Guilligay, D., Pflug, A., Malet, H., Berger, I., Crepin, T., Hart, D., Lunardi, T., Nanao, M., Ruigrok, R. W., and Cusack, S. (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase, Nature, 516, 361–366.

    Article  CAS  PubMed  Google Scholar 

  42. Guilligay, D., Kadlec, J., Crepin, T., Lunardi, T., Bouvier, D., Kochs, G., Ruigrok, R. W., and Cusack, S. (2014) Comparative structural and functional analysis of orthomyxovirus polymerase cap-snatching domains, PLoS One, 9, e84973.

  43. Belin, S., Beghin, A., Solano-Gonzalez, E., Bezin, L., Brunet-Manquat, S., Textoris, J., Prats, A. C., Mertani, H. C., Dumontet, C., and Diaz, J. J. (2009) Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells, PLoS One, 4, e7147.

  44. Kishore, S., and Stamm, S. (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C, Science, 311, 230–232.

    Article  CAS  PubMed  Google Scholar 

  45. Singh, M. (2013) Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration, Front. Genet., 3, 326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Prestwich, E. G., Mangerich, A., Pang, B., McFaline, J. L., Lonkar, P., Sullivan, M. R., Trudel, L. J., Taghizedeh, K., and Dedon, P. C. (2013) Increased levels of inosine in a mouse model of inflammation, Chem. Res. Toxicol., 26, 538–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stepanov, G. A., Filippova, J. A., Komissarov, A. B., Kuligina, E. V., Richter, V. A., and Semenov, D. V. (2015) Regulatory role of small nucleolar RNAs in human dis-eases, Biomed. Res. Int., 2015, 206849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Therizols, G., Laforets, F., Marcel, V., Catez, F., Bouvet, P., and Diaz, J. J. (2015) in Epigenetic Cancer Therapy: Ribosomal RNA Methylation and Cancer (Gray, S. G., ed.) American Elsevier, N. Y., pp. 129–139.

  49. Grosjean, H., Keith, G., and Droogmans, L. (2004) Detection and quantification of modified nucleotides in RNA using thin-layer chromatography, Methods Mol. Biol., 265, 357–391.

    CAS  PubMed  Google Scholar 

  50. Silberklang, M., Gillum, A. M., and RajBhandary, U. L. (1977) The use of nuclease P1 in sequence analysis of end group labeled RNA, Nucleic Acids Res., 4, 4091–4108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chan, C. T., Dyavaiah, M., DeMott, M. S., Taghizadeh, K., Dedon, P. C., and Begley, T. J. (2010) A quantitative systems approach reveals dynamic control of tRNA modi-fications during cellular stress, PLoS Genet., 6, e1001247.

  52. Basanta-Sanchez, M., Temple, S., Ansari, S. A., D’Amico, A., and Agris, P. F. (2016) Attomole quantification and global profile of RNA modifications: epitranscriptome of human neural stem cells, Nucleic Acids Res., 44, e26.

  53. Cai, W. M., Chionh, Y. H., Hia, F., Gu, C., Kellner, S., McBee, M. E., Ng, C. S., Pang, Y. L. J., Prestwich, E. G., Lim, K. S., Babu, I. R., Begley, T. J., and Dedon, P. C. (2015) A platform for discovery and quantification of mod-ified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications, Methods Enzymol., 560, 29–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thuring, K., Schmid, K., Keller, P., and Helm, M. (2016) Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry, Methods, 107, 48–56.

    Article  PubMed  CAS  Google Scholar 

  55. Pang, B., Zhou, X., Yu, H., Dong, M., Taghizadeh, K., Wishnok, J. S., Tannenbaum, S. R., and Dedon, P. C. (2007) Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation, Carcinogenesis, 28, 1807–1813.

    Article  CAS  PubMed  Google Scholar 

  56. Behm-Ansmant, I., Helm, M., and Motorin, Y. (2011) Use of specific chemical reagents for detection of modified nucleotides in RNA, J. Nucleic Acids, 2011, 408053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Loverix, S., Winqvist, A., Stromberg, R., and Steyaert, J. (2000) Mechanism of RNase T1: concerted triester-like phosphoryl transfer via a catalytic three-centered hydrogen bond, Chem. Biol., 7, 651–658.

    Article  CAS  PubMed  Google Scholar 

  58. Guymon, R., Pomerantz, S. C., Ison, J. N., Crain, P. F., and McCloskey, J. A. (2007) Post-transcriptional modifica-tions in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidine, RNA, 13, 396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stepinski, J., Waddell, C., Stolarski, R., Darzynkiewicz, E., and Rhoads, R. E. (2001) Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG, RNA, 7, 1486–1495.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Deshpande, R. A., and Shankar, V. (2002) Ribonucleases from T2 family, Crit. Rev. Microbiol., 28, 79–122.

    Article  CAS  PubMed  Google Scholar 

  61. Gaur, R., Bjork, G. R., Tuck, S., and Varshney, U. (2007) Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block, J. Biosci., 32, 747–754.

    Article  CAS  PubMed  Google Scholar 

  62. Volkin, E., and Cohn, W. E. (1953) On the structure of ribonucleic acids. II. The products of ribonuclease action, J. Biol. Chem., 205, 767–782.

    CAS  PubMed  Google Scholar 

  63. Glitz, D. G., and Dekker, C. A. (1964) Studies on a ribonu-clease from Ustilago sphaerogenna. II. Specificity of the enzyme, Biochemistry, 3, 1399–1406.

    Article  CAS  PubMed  Google Scholar 

  64. Addepalli, B., Lesner, N. P., and Limbach, P. A. (2015) Detection of RNA nucleoside modifications with the uri-dine-specific ribonuclease MC1 from Momordica charan-tia, RNA, 21, 1746–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morse, D. P., and Bass, B. L. (1997) Detection of inosine in messenger RNA by inosine-specific cleavage, Biochemistry, 36, 8429–8434.

    Article  CAS  PubMed  Google Scholar 

  66. Morse, D. P. (2004) Identification of substrates for adeno-sine deaminases that act on RNA, Methods Mol. Biol., 265, 199–218.

    CAS  PubMed  Google Scholar 

  67. Nishikura, K. (2010) Functions and regulation of RNA edit-ing by ADAR deaminase, Annu. Rev. Biochem., 79, 321–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mengel-Jorgensen, J., and Kirpekar, F. (2002) Detection of pseudouridine and other modifications in tRNA by cya-noethylation and MALDI mass spectrometry, Nucleic Acids Res., 30, e135.

  69. Chan, C. T., Pang, Y. L., Deng, W., Babu, I. R., Dyavaiah, M., Begley, T. J., and Dedon, P. C. (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins, Nat. Commun., 3, 937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ross, R., Cao, X., Yu, N., and Limbach, P. A. (2016) Sequence mapping of transfer RNA chemical modifica-tions by liquid chromatography tandem mass spectrometry, Methods, 107, 73–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kirpekar, F., Douthwaite, S., and Roepstorff, P. (2000) Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry, RNA, 6, 296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshida, M., and Ukita, T. (1968) Modification of nucleo-sides and nucleotides. VII. Selective cyanoethylation of inosine and pseudouridine in yeast transfer ribonucleic acid, Biochim. Biophys. Acta, 157, 455–465.

    Article  CAS  PubMed  Google Scholar 

  73. Emmerechts, G., Herdewijn, P., and Rozenski, J. (2005) Pseudouridine detection improvement by derivatization with methyl vinyl sulfone and capillary HPLC-mass spec-trometry, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 825, 233–238.

    Article  CAS  PubMed  Google Scholar 

  74. Ofengand, J., Del Campo, M., and Kaya, Y. (2001) Mapping pseudouridines in RNA molecules, Methods, 25, 365–373.

    Article  CAS  PubMed  Google Scholar 

  75. Patteson, K. G., Rodicio, L. P., and Limbach, P. A. (2001) Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry, Nucleic Acids Res., 29, E49-9.

  76. Durairaj, A., and Limbach, P. A. (2008) Improving CMC-derivatization of pseudouridine in RNA for mass spectro-metric detection, Anal. Chim. Acta, 612, 173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Popova, A. M., and Williamson, J. R. (2014) Quantitative analysis of rRNA modifications using stable isotope label-ing and mass spectrometry, J. Am. Chem. Soc., 136, 2058–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kellner, S., Neumann, J., Rosenkranz, D., Lebedeva, S., Ketting, R. F., Zischler, H., Schneider, D., and Helm, M. (2014) Profiling of RNA modifications by multiplexed sta-ble isotope labelling, Chem. Commun. (Camb.), 50, 3516–3518.

    Article  CAS  Google Scholar 

  79. Taoka, M., Nobe, Y., Hori, M., Takeuchi, A., Masaki, S., Yamauchi, Y., Nakayama, H., Takahashi, N., and Isobe, T. (2015) A mass spectrometry-based method for comprehen-sive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs, Nucleic Acids Res., 43, e115.

  80. Nakayama, H., Takahashi, N., and Isobe, T. (2011) Informatics for mass spectrometry-based RNA analysis, Mass Spectrom. Rev., 30, 1000–1012.

    Article  CAS  PubMed  Google Scholar 

  81. Sample, P. J., Gaston, K. W., Alfonzo, J. D., and Limbach, P. A. (2015) RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids, Nucleic Acids Res., 43, e64.

  82. Ho, N. W., and Gilham, P. T. (1971) Reaction of pseudouridine and inosine with N-cyclohexyl-N′-β-(4-methylmorpholinium)ethylcarbodiimide, Biochemistry, 10, 3651–3657.

    Article  CAS  PubMed  Google Scholar 

  83. Bakin, A., and Ofengand, J. (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique, Biochemistry, 32, 9754–9762.

    Article  CAS  PubMed  Google Scholar 

  84. Bakin, A., and Ofengand, J. (1998) Mapping of pseudouri-dine residues in RNA to nucleotide resolution, Methods Mol. Biol., 77, 297–309.

    CAS  PubMed  Google Scholar 

  85. Carlile, T. M., Rojas-Duran, M. F., Zinshteyn, B., Shin, H., Bartoli, K. M., and Gilbert, W. V. (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells, Nature, 515, 143–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lovejoy, A. F., Riordan, D. P., and Brown, P. O. (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cere-visiae, PLoS One, 9, e110799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Schwartz, S., Bernstein, D. A., Mumbach, M. R., Jovanovic, M., Herbst, R. H., Leon-Ricardo, B. X., Engreitz, J. M., Guttman, M., Satija, R., Lander, E. S., Fink, G., and Regev, A. (2014) Transcriptome-wide map-ping reveals widespread dynamic-regulated pseudouridyla-tion of ncRNA and mRNA, Cell, 159, 148–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F., and Yi, C. (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome, Nat. Chem. Biol., 11, 592–597.

    Article  CAS  PubMed  Google Scholar 

  89. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994) High sensitivity mapping of methylated cytosines, Nucleic Acids Res., 22, 2990–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gu, W., Hurto, R. L., Hopper, A. K., Grayhack, E. J., and Phizicky, E. M. (2005) Depletion of Saccharomyces cere-visiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m5C, Mol. Cell. Biol., 25, 8191–8201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schaefer, M., Pollex, T., Hanna, K., and Lyko, F. (2009) RNA cytosine methylation analysis by bisulfite sequenc-ing, Nucleic Acids Res., 37, e12.

  92. Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O., and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs, PLoS Genet., 9, e1003602.

    CAS  PubMed  Google Scholar 

  93. Khoddami, V., and Cairns, B. R. (2013) Identification of direct targets and modified bases of RNA cytosine methyl-transferases, Nat. Biotechnol., 31, 458–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hussain, S., Sajini, A. A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J. G., Odom, D. T., Ule, J., and Frye, M. (2013) NSun2-medi-ated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs, Cell Rep., 4, 255–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., Korlach, J., and Turner, S. W. (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing, Nat. Methods, 7, 461–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vilfan, I. D., Tsai, Y. C., Clark, T. A., Wegener, J., Dai, Q., Yi, C., Pan, T., Turner, S. W., and Korlach, J. (2013) Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription, J. Nanobiotechnol., 11, 8.

    Article  CAS  Google Scholar 

  97. Golovina, A. Y., Dzama, M. M., Petriukov, K. S., Zatsepin, T. S., Sergiev, P. V., Bogdanov, A. A., and Dontsova, O. A. (2014) Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolu-tion melting (HRM) analysis, Nucleic Acids Res., 42, e27.

  98. Jia, G., Fu, Y., and He, C. (2013) Reversible RNA adeno-sine methylation in biological regulation, Trends Genet., 29, 108–115.

    Article  CAS  PubMed  Google Scholar 

  99. Tycowski, K. T., Smith, C. M., Shu, M.-D., and Steitz, J. A. (1996) A small nucleolar RNA requirement for site-spe-cific ribose methylation of rRNA in Xenopus, Proc. Natl. Acad. Sci. USA, 93, 14480–14485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rebane, A., Roomere, H., and Metspalu, A. (2002) Locations of several novel 2′-O-methylated nucleotides in human 28S rRNA, BMC Mol. Biol., 3, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Smith, J. D., and Dunn, D. B. (1959) An additional sugar component of ribonucleic acids, Biochim. Biophys. Acta, 31, 573–575.

    Article  CAS  PubMed  Google Scholar 

  102. Buchhaupt, M., Peifer, C., and Entian, K. D. (2007) Analysis of 2′-O-methylated nucleosides and pseudouridines in ribosomal RNAs using DNAzymes, Anal. Biochem., 361, 102–108.

    Article  CAS  PubMed  Google Scholar 

  103. Hengesbach, M., Meusburger, M., Lyko, F., and Helm, M. (2008) Use of DNAzymes for site-specific analysis of ribonucleotide modifications, RNA, 14, 180–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gehrig, S., Eberle, M. E., Botschen, F., Rimbach, K., Eberle, F., Eigenbrod, T., Kaiser, S., Holmes, W. M., Erdmann, V. A., Sprinzl, M., Bec, G., Keith, G., Dalpke, A. H., and Helm, M. (2012) Identification of modifica-tions in microbial, native tRNA that suppress immunos-timulatory activity, J. Exp. Med., 209, 225–233.

    CAS  PubMed  Google Scholar 

  105. Buchhaupt, M., Sharma, S., Kellner, S., Oswald, S., Paetzold, M., Peifer, C., Watzinger, P., Schrader, J., Helm, M., and Entian, K. D. (2014) Partial methylation at Am100 in 18S rRNA of baker’s yeast reveals ribosome het-erogeneity on the level of eukaryotic rRNA modification, PLoS One, 9, e89640.

  106. Maden, B. E., Corbett, M. E., Heeney, P. A., Pugh, K., and Ajuh, P. M. (1995) Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA, Biochimie, 77, 22–29.

    Article  CAS  PubMed  Google Scholar 

  107. Maden, B. E. (2001) Mapping 2′-O-methyl groups in ribo-somal RNA, Methods, 25, 374–382.

    Article  CAS  PubMed  Google Scholar 

  108. Filippova, J. A., Stepanov, G. A., Semenov, D. V., Koval, O. A., Kuligina, E. V., Rabinov, I. V., and Richter, V. A. (2015) Modified method of rRNA structure analysis reveals novel characteristics of box C/D RNA analogues, Acta Naturae, 7, 64–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Qu, G., Van Nues, R. W., Watkins, N. J., and Maxwell, E. S. (2011) Mol. Cell. Biol., 31, 365–374.

    Article  CAS  PubMed  Google Scholar 

  110. Blatter, N., Bergen, K., Nolte, O., Welte, W., Diederichs, K., Mayer, J., Wieland, M., and Marx, A. (2013) Structure and function of an RNA-reading thermostable DNA poly-merase, Angew. Chem. Int. Ed. Engl., 52, 11935–11939.

    Article  CAS  PubMed  Google Scholar 

  111. Aschenbrenner, J., and Marx, A. (2016) Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase, Nucleic Acids Res., 44, 3495–3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karijolich, J., Kantartzis, A., and Yu, Y. T. (2010) Quantitative analysis of RNA modifications, Methods Mol. Biol., 629, 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu, G., Xiao, M., Yang, C., and Yu, Y. T. (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP, EMBO J., 30, 79–89.

    Article  PubMed  CAS  Google Scholar 

  114. Yu, Y. T., Shu, M. D., and Steitz, J. A. (1997) A new method for detecting sites of 2′-O-methylation in RNA molecules, RNA, 3, 324–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gonzales, B., Henning, D., So, R. B., Dixon, J., Dixon, M. J., and Valdez, B. C. (2005) The Treacher Collins syn-drome (TCOF1) gene product is involved in pre-rRNA methylation, Hum. Mol. Genet., 14, 2035–2043.

    Article  CAS  PubMed  Google Scholar 

  116. Saikia, M., Dai, Q., Decatur, W. A., Fournier, M. J., Piccirilli, J. A., and Pan, T. (2006) A systematic, ligation-based approach to study RNA modifications, RNA, 12, 2025–2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., and Pan, T. (2013) Probing N6-methyladenosine RNA modifi-cation status at single nucleotide resolution in mRNA and long noncoding RNA, RNA, 19, 1848–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, N., and Pan, T. (2016) Probing N6-methyladenosine (m6A) RNA modification in total RNA with SCARLET, Methods Mol. Biol., 1358, 285–292.

    Article  CAS  PubMed  Google Scholar 

  119. Mishima, E., Jinno, D., Akiyama, Y., Itoh, K., Nankumo, S., Shima, H., Kikuchi, K., Takeuchi, Y., Elkordy, A., Suzuki, T., Niizuma, K., Ito, S., Tomioka, Y., and Abe, T. (2015) Immuno-Northern blotting: detection of RNA modifications by using antibodies against modified nucle-osides, PLoS One, 10, e0143756.

  120. Waghmare, S. P., and Dickman, M. J. (2011) Characterization and quantification of RNA post-tran-scriptional modifications using stable isotope labeling of RNA in conjunction with mass spectrometry analysis, Anal. Chem., 83, 4894–4901.

    Article  CAS  PubMed  Google Scholar 

  121. Russell, S. P., and Limbach, P. A. (2013) Evaluating the reproducibility of quantifying modified nucleosides from ribonucleic acids by LC-UV-MS, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 923-924, 74–82.

    Article  CAS  PubMed  Google Scholar 

  122. Su, D., Chan, C. T., Gu, C., Lim, K. S., Chionh, Y. H., McBee, M. E., Russell, B. S., Babu, I. R., Begley, T. J., and Dedon, P. C. (2014) Quantitative analysis of ribonu-cleoside modifications in tRNA by HPLC-coupled mass spectrometry, Nat. Protoc., 9, 828–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kellner, S., Ochel, A., Thuring, K., Spenkuch, F., Neumann, J., Sharma, S., Entian, K. D., Schneider, D., and Helm, M. (2014) Absolute and relative quantification of RNA modifications via biosynthetic isotopomers, Nucleic Acids Res., 42, e142.

  124. Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′-UTRs and near stop codons, Cell, 149, 1635–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N., and Rechavi, G. (2013) Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively paral-lel sequencing, Nat. Protoc., 8, 176–189.

    Article  CAS  PubMed  Google Scholar 

  126. Schwartz, S., Agarwala, S. D., Mumbach, M. R., Jovanovic, M., Mertins, P., Shishkin, A., Tabach, Y., Mikkelsen, T. S., Satija, R., Ruvkun, G., Carr, S. A., Lander, E. S., Fink, G. R., and Regev, A. (2013) High-res-olution mapping reveals a conserved, widespread, dynam-ic mRNA methylation program in yeast meiosis, Cell, 155, 1409–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M., and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res., 40, 5023–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, K., Lu, Z., Wang, X., Fu, Y., Luo, G. Z., Liu, N., Han, D., Dominissini, D., Dai, Q., Pan, T., and He, C. (2015) High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing, Angew. Chem. Int. Ed. Engl., 54, 1587–1590.

    Article  CAS  PubMed  Google Scholar 

  129. Birkedal, U., Christensen-Dalsgaard, M., Krogh, N., Sabarinathan, R., Gorodkin, J., and Nielsen, H. (2015) Profiling of ribose methylations in RNA by high-through-put sequencing, Angew. Chem. Int. Ed. Engl., 54, 451–455.

    CAS  PubMed  Google Scholar 

  130. Krogh, N., Jansson, M. D., Hafner, S. J., Tehler, D., Birkedal, U., Christensen-Dalsgaard, M., Lund, A. H., and Nielsen, H. (2016) Profiling of 2′-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity, Nucleic Acids Res., 44, 7884–7895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cattenoz, P. B., Taft, R. J., Westhof, E., and Mattick, J. S. (2013) Transcriptome-wide identification of A >I RNA editing sites by inosine specific cleavage, RNA, 19, 257–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Merino, E. J., Wilkinson, K. A., Coughlan, J. L., and Weeks, K. M. (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE), J. Am. Chem. Soc., 127, 4223–4231.

    Article  CAS  PubMed  Google Scholar 

  133. Wilkinson, K. A., Merino, E. J., and Weeks, K. M. (2006) Selective 2′-hydroxyl acylation analyzed by primer exten-sion (SHAPE): quantitative RNA structure analysis at sin-gle nucleotide resolution, Nat. Protoc., 1, 1610–1616.

    Article  CAS  PubMed  Google Scholar 

  134. Lusvarghi, S., Sztuba-Solinska, J., Purzycka, K. J., Rausch, J. W., and Le Grice, S. F. (2013) RNA secondary structure prediction using high-throughput SHAPE, J. Vis. Exp., 75, e50243.

    Google Scholar 

  135. Weeks, K. M., and Mauger, D. M. (2011) Exploring RNA structural codes with SHAPE chemistry, Acc. Chem. Res., 44, 1280–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Steen, K. A., Siegfried, N. A., and Weeks, K. M. (2011) Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease (RNase-detected SHAPE) for direct analysis of covalent adducts and of nucleotide flexibility in RNA, Nat. Protoc., 6, 1683–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mortimer, S. A., and Weeks, K. M. (2007) A fast-acting reagent for accurate analysis of RNA secondary and terti-ary structure by SHAPE chemistry, J. Am. Chem. Soc., 129, 4144–4145.

    Article  CAS  PubMed  Google Scholar 

  138. Wilkinson, K. A., Vasa, S. M., Deigan, K. E., Mortimer, S. A., Giddings, M. C., and Weeks, K. M. (2009) Influence of nucleotide identity on ribose 2′-hydroxyl reactivity in RNA, RNA, 15, 1314–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vasa, S. M., Guex, N., Wilkinson, K. A., Weeks, K. M., and Giddings, M. C. (2008) ShapeFinder: a software sys-tem for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary elec-trophoresis, RNA, 14, 1979–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kladwang, W., VanLang, C. C., Cordero, P., and Das, R. (2011) Understanding the errors of SHAPE-directed RNA structure modeling, Biochemistry, 50, 8049–8056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Watts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W., Jr., Swanstrom, R., Burch, C. L., and Weeks, K. M. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome, Nature, 460, 711–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Novikova, I. V., Hennelly, S. P., and Sanbonmatsu, K. Y. (2012) Structural architecture of the human long non-coding RNA, steroid receptor RNA activator, Nucleic Acids Res., 40, 5034–5051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Loopez-Carrasco, A., and Flores, R. (2016) Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: a “naked” rod-like conformation similar but not identical to that observed in vitro, RNA Biol., 1–9, doi: 10.1080/15476286.2016.1223005.

    Google Scholar 

  144. Watters, K. E., and Lucks, J. B. (2016) Mapping RNA structure in vitro with SHAPE chemistry and next-genera-tion sequencing (SHAPE-Seq), Methods Mol. Biol., 1490, 135–162.

    Article  CAS  PubMed  Google Scholar 

  145. Steen, K. A., Malhotra, A., and Weeks, K. M. (2010) Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease, J. Am. Chem. Soc., 132, 9940–9943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C., and Assmann, S. M. (2014) In vivo genome-wide pro-filing of RNA secondary structure reveals novel regulatory features, Nature, 505, 696–700.

    Article  CAS  PubMed  Google Scholar 

  147. Picardi, E., Gallo, A., Galeano, F., Tomaselli, S., and Pesole, G. (2012) A novel computational strategy to iden-tify A-to-I RNA editing sites by RNA-Seq data: de novo detection in human spinal cord tissue, PLoS One, 7, e44184.

  148. Lokhov, P. G., Balashova, E. E., Voskresenskaya, A. A., Trifonova, O. P., Maslov, D. L., and Archakov, A. I. (2016) Mass spectrometric signatures of the blood plasma metabolome for disease diagnostics, Biomed. Rep., 4, 122–126.

    Article  PubMed  Google Scholar 

  149. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y.-H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., and Rossi, D. J. (2010) Highly efficient reprogramming to pluripotency and directed differentia-tion of human cells with synthetic modified mRNA, Cell Stem Cell, 7, 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Snead, N. M., and Rossi, J. J. (2012) RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics, Nucleic Acid Ther., 22, 139–146.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Stepanov.

Additional information

Original Russian Text © J. A. Filippova, D. V. Semenov, E. S. Juravlev, A. B. Komissarov, V. A. Richter, G. A. Stepanov, 2017, published in Biokhimiya, 2017, Vol. 82, No. 11, pp. 1557–1576.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, J.A., Semenov, D.V., Juravlev, E.S. et al. Modern approaches for identification of modified nucleotides in RNA. Biochemistry Moscow 82, 1217–1233 (2017). https://doi.org/10.1134/S0006297917110013

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917110013

Keywords

Navigation