Skip to main content
Log in

Structural insight into interaction between C20 phenylalanyl derivative of tylosin and ribosomal tunnel

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Macrolides are clinically important antibiotics that inhibit protein biosynthesis on ribosomes by binding to ribosomal tunnel. Tylosin belongs to the group of 16-membered macrolides. It is a potent inhibitor of translation whose activity is largely due to reversible covalent binding of its aldehyde group with the base of A2062 in 23S ribosomal RNA. It is known that the conversion of the aldehyde group of tylosin to methyl or carbinol groups dramatically reduces its inhibitory activity. However, earlier we obtained several derivatives of tylosin having comparable activity in spite of the fact that the aldehyde group of tylosin in these compounds was substituted with an amino acid or a peptide residue. Details of the interaction of these compounds with the ribosome that underlies their high inhibitory activity were not known. In the present work, the structure of the complex of tylosin derivative containing in position 20 the residue of ethyl ester of 2-imino(oxy)acetylphenylalanine with the tunnel of the E. coli ribosome was identified by means of molecular dynamics simulations, which could explain high biological activity of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MD:

molecular dynamics

NPET:

nascent peptide exit tunnel

OMT:

5-O-mycaminosyltylonolide

PTC:

peptidyltransferase center

TylPhe:

phenylalanyl derivative of tylosin

References

  1. Omura, S. (ed.) (2003) Macrolide Antibiotics: Chemistry, Biology and Practice, 2nd Edn., Academic Press, N.Y.

    Google Scholar 

  2. Dunkle, J. A., Xiong, L., Mankin, A. S., and Cate, J. H. D. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152–17157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansen, J., Ippolito, J., Ban, N., Nissen P., Moore, P., and Steitz, T. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117–128.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, D. N. (2009) The A-Z of bacterial translation inhibitors, Crit. Rev. Biochem. Mol. Biol., 44, 393–433.

    Article  CAS  PubMed  Google Scholar 

  5. Ruan, Z.-X., Huangfu, D.-S., Xu, X.-J., Sun, P.-H., and Chen, W.-M. (2013) 3D-QSAR and molecular docking for the discovery of ketolide derivatives, Exp. Opin. Drug Discov., 8, 427–444.

    Article  CAS  Google Scholar 

  6. Korshunova, G. A., Sumbatyan, N. V., Fedorova, N. V., Kuznetsova, I. V., Shishkina, A. V., and Bogdanov, A. A. (2007) Peptide derivatives of tylosin-related macrolides, Russ. J. Bioorg. Chem., 33, 218–226.

    Article  CAS  Google Scholar 

  7. Sumbatyan, N. V., Kuznetsova, I. V., Karpenko, V. V., Fedorova, N. V., Chertkov, V. A., Korshunova, G. A., and Bogdanov, A. A. (2010) Amino acid and peptide derivatives of the tylosin family of antibiotics modified by aldehyde function, Russ. J. Bioorg. Chem., 36, 245–256.

    Article  CAS  Google Scholar 

  8. Starosta, A. L., Karpenko, V. V., Shishkina, A. V., Mikolajka, A., Sumbatyan, N. V., Schluenzen, F., Korshunova, G. A., Bogdanov, A. A., and Wilson, D. N. (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition, Chem. Biol., 17, 504–514.

    Article  CAS  PubMed  Google Scholar 

  9. Makarov, G. I., Makarova, T. M., Sumbatyan, N. V., and Bogdanov, A. A. (2016) Investigation of ribosomes using molecular dynamics simulation methods, Biochemistry (Moscow), 81, 1579–1588.

    Article  CAS  Google Scholar 

  10. Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-O-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconjug. Chem., 24, 1861–1869.

    Article  CAS  PubMed  Google Scholar 

  11. Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Muller, K. M., Pande, N., Shang, Z., Yu, N., and Gutell, R. R. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs, BMC Bioinformatics, 3, 1–31.

    Article  Google Scholar 

  12. Byrd, R., Lu, P., and Nocedal, J. (1995) A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Statist. Comput., 16, 1190–1208.

    Article  Google Scholar 

  13. Petrone, P., Snow, C., Lucent, D., and Pande, V. (2008) Side-chain recognition and gating in the ribosome exit tunnel, Proc. Natl. Acad. Sci. USA, 105, 16549–16554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lucent, D., Snow, C., Aitken, C., and Pande, V. (2010) Non-bulk-like solvent behavior in the ribosome exit tunnel, PLoS Comput. Biol., 6, e1000963.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-Doval, A. B., Juhos, S., Schmidtke, P., Barril, X., Hubbard, R. E., and Morley, S. D. (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids, PLoS Comput. Biol., 10, e1003571.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A., and Berendsen, H. (2005) GROMACS: fast, flexible, free, J. Comput. Chem., 26, 1701–1718.

    Article  Google Scholar 

  17. Van der Spoel, D., Lindahl, E., Hess, B., and Kutzner, C. (2008) GROMACS 4: algorithms for highly efficient, loadbalanced, and scalable molecular simulation, J. Chem. Theory Comp., 4, 435–447.

    Article  Google Scholar 

  18. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters, Prot. Struct. Funct. Bioinform., 65, 712–725.

    Article  CAS  Google Scholar 

  19. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general Amber force field, J. Comput. Chem., 25, 1157–1174.

    Article  CAS  PubMed  Google Scholar 

  20. Bayly, C. I., Cieplak, P., Cornell, W., and Kollman, P. A. (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem., 97, 10269–10280.

    Article  CAS  Google Scholar 

  21. Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014107–014106.

    Article  Google Scholar 

  22. Berendsen, H., Postma, J., van Gunsteren, W., DiNola, A., and Haak, J. (1984) Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690.

    Article  CAS  Google Scholar 

  23. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089–10092.

    Article  CAS  Google Scholar 

  24. Horn, H. W., Swope, W. C., Pitera, J. W., Madura, J. D., Dick, T. J., Hura, G. L., and Head-Gordon, T. (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-EW, J. Chem. Phys., 120, 9665–9678.

    Article  CAS  PubMed  Google Scholar 

  25. Joung, I. S., and Cheatham, T. E. (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J. Phys. Chem. B, 112, 9020–9041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Athavale, S., Petrov, A., Hsiao, C., Watkins, D., Prickett, C., Gossett, J., Lie, L., Bowman, J., O’Neill, E., Hud, C. B. N., Wartell, R., Harvey, S., and Williams, L. (2012) RNA folding and catalysis mediated by iron (II), PLoS One, 7, 1–7.

    Article  Google Scholar 

  27. Hess, B., Bekker, H., Berendsen, H. J., and Fraaije, J. G. (1997) LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463–1472.

    Article  CAS  Google Scholar 

  28. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., and Bussi, G. (2014) PLUMED 2: new feathers for an old bird, Comp. Phys. Commun., 185, 604–613.

    Article  CAS  Google Scholar 

  29. Daura, X., Gademann, K., Jaun, B., Seebach, D., Gunsteren, W. F., and Mark, A. E. (1999) Peptide folding: when simulation meets experiment, Ang. Chem. Inter. Ed., 38, 236–240.

    Article  CAS  Google Scholar 

  30. Wilson, D., Harms, J., Nierhaus, K., Schlunzen, F., and Fucini, P. (2005) Species-specific antibiotic–ribosome interactions: implications for drug development, Biol. Chem., 386, 1239–1252.

    Article  CAS  PubMed  Google Scholar 

  31. Marks, J., Kannan, K., Roncase, E. J., Klepacki, D., Kefi, A., Orelle, C., Vázquez-Laslop, N., and Mankin, A. S. (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center, Proc. Natl. Acad. Sci. USA, 113, 12150–12155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sothiselvam, S., Neuner, S., Rigger, L., Klepacki, D., Micura, R., Vázquez-Laslop, N., and Mankin, A. S. (2017) Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size, Cell Rep., 16, 1789–1799.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bogdanov.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 8, pp. 1199-1208.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-179, July 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.I., Sumbatyan, N.V. & Bogdanov, A.A. Structural insight into interaction between C20 phenylalanyl derivative of tylosin and ribosomal tunnel. Biochemistry Moscow 82, 925–932 (2017). https://doi.org/10.1134/S0006297917080077

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917080077

Keywords

Navigation