Skip to main content
Log in

MicroRNA-294 promotes cellular proliferation and motility through the PI3K/AKT and JAK/STAT pathways by upregulation of NRAS in bladder cancer

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In our study we examined the role of microRNA-294 (miR-294) in bladder cancer and related mechanisms. Realtime polymerase chain reaction (RT-PCR) was performed to determine the expression level of miR-294. Western blot was used to determine the expression of NRAS, mainly factors in the PI3K/AKT and JAK/STAT pathways. Cell counting kit8 assay, clonogenic assay, wound-healing assay, transwell and flow cytometry were used to explore, respectively, cell proliferation, survival, migration, invasion, and apoptosis of bladder cancer cell line T24. The expressions of miR-294 in bladder cancer cells including J82, HT1376, T24, and SW780 were significantly increased compared to those in human bladder epithelium cells (both HCV29 and SV-HUC-1). The proliferation rate, surviving fraction, migration, and invasion of T24 cells in miR-294 mimetic transfected group were significantly increased, while they were significantly decreased by miR294 inhibitor transfection. Moreover, miR-294 suppression could increase the apoptotic rate of T24 cells. In addition, drug resistance of T24 cells to cisplatin was increased in miR-294 mimetic-treated group, while it was decreased by miR-294 inhibitor compared to empty control. Overexpression of miR-294 could upregulate NRAS expression in T24 cells and activate PI3K/AKT and JAK/STAT pathways. We found that miR-294 expression was positively related with proliferation and motility of T24 cells. Moreover, miR-294 suppression could promote the sensitivity of T24 cells to cisplatin. We also found miR-294 could upregulate NRAS and activate the PI3K/AKT and JAK/STAT pathways in T24 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M. J. (2009) Cancer statistics, 2009 CA, Cancer J. Clin., 59, 225–249.

    Article  Google Scholar 

  2. Cheung, G., Sahai, A., Billia, M., Dasgupta, P., and Khan, M. S. (2013) Recent advances in the diagnosis and treatment of bladder cancer, BMC Med., 11, 1–8.

    Article  Google Scholar 

  3. Martyn-Hemphill, C., Mak, D., Khan, M. S., Challacombe, B. J., and Bishop, C. V. (2013) Recent advances in diagnosis and treatment of transitional cell carcinoma of the bladder, Int. J. Surg., 11, 749–752.

    Article  PubMed  Google Scholar 

  4. Moyer, V. A. (2011) Screening for bladder cancer: U.S. Preventive Services Task Force (USPSTF) recommendation statement, Ann. Int. Med., 155, 246–251.

    Article  PubMed  Google Scholar 

  5. Yafi, F. A., Aprikian, A. G., and Chin, J. L. (2011) Contemporary outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: a Canadian multicentre experience, BJU Int., 108, 539–545.

    Article  PubMed  Google Scholar 

  6. Dalbagni, G., Vora, K., Kaag, M., Cronin, A., Bochner, B., Donat, S. M., and Herr, H. W. (2009) Clinical outcome in a contemporary series of restaged patients with clinical T1 bladder cancer, Eur. Urol., 56, 903–910.

    Article  PubMed  Google Scholar 

  7. Richards, K. A., Smith, N. D., and Steinberg, G. D. (2014) The importance of transurethral resection of bladder tumor in the management of nonmuscle invasive bladder cancer: a systematic review of novel technologies, J. Urol., 191, 1655–1664.

    Article  PubMed  Google Scholar 

  8. Herr, H. W., and Donat, S. M. (2008) Quality control in transurethral resection of bladder tumours, BJU Int., 102, 1242–1246.

    Article  PubMed  Google Scholar 

  9. Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet., 9, 102–114.

    Article  CAS  PubMed  Google Scholar 

  10. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs, Science, 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  11. Lawrie, C. H. (2013) MicroRNAs as Oncogenes and Tumor Suppressors. MicroRNAs in Medicine, Wiley, Hoboken, NJ, pp. 223–243.

    Google Scholar 

  12. Feng, Y., Liu, J., Kang, Y., He, Y., Liang, B., Yang, P., and Yu, Z. (2014) miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer, J. Exp. Clin. Cancer Res., 33, 1–10.

    Article  Google Scholar 

  13. Gan, Y., Yao, W., Wei, X., Li, H., Hua, X., and Lang, B. (2014) MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44, J. Exp. Clin. Cancer Res., 33, 1–13.

    Article  Google Scholar 

  14. Dyrskjot, L., Ostenfeld, M. S., Bramsen, J. B., Silahtaroglu, A. N., Lamy, P., Ramanathan, R., Fristrup, N., Jensen, J. L., Andersen, C. L., Zieger, K., Kauppinen, S., Ulhoi, B. P., Kjems, J., Borre, M., and Orntoft, T. F. (2009) Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro, Cancer Res., 69, 4851–4860.

    Article  CAS  PubMed  Google Scholar 

  15. Ichimi, T., Enokida, H., Okuno, Y., Kunimoto, R., Chiyomaru, T., Kawamoto, K., Kawahara, K., Toki, K., Kawakami, K., Nishiyama, K., Tsujimoto, G., Nakagawa, M., and Seki, N. (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer, Int. J. Cancer, 125, 345–352.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C., Ridzon, D., Lee, C. T., Blake, J., Sun, Y., and Strauss, W. M. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets, Mammal. Genome (Official J. Int. Mammal. Genome Soc.), 18, 316–327.

    Article  CAS  Google Scholar 

  17. Houbaviy, H. B., Dennis, L., Jaenisch, R., and Sharp, P. A. (2005) Characterization of a highly variable eutherian microRNA gene, RNA (A Publ. RNA Soc.), 11, 1245–1257.

    Article  CAS  Google Scholar 

  18. Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., and Blelloch, R. (2008) Embryonic stem cellspecific microRNAs regulate the G1–S transition and promote rapid proliferation, Nat. Genet., 40, 1478–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics, 2002, Cancer J. Clin., 55, 74–108.

    Article  Google Scholar 

  20. Nobori, T. (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers, Nature, 368, 753–756.

    Article  CAS  PubMed  Google Scholar 

  21. Tricoli, J. V., and Jacobson, J. W. (2007) MicroRNA: potential for cancer detection, diagnosis, and prognosis, Cancer Res., 67, 4553–4555.

    Article  CAS  PubMed  Google Scholar 

  22. Hammond, S. M. (2007) MicroRNAs as tumor suppressors, Nat. Genet., 39, 582–583.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, B. R., Feinbaum, R., and Ambros, V. (2012) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843–854.

    Article  Google Scholar 

  24. Kamb, A. (1994) A cell regulator potentially involved in genesis of many tumor types, Science, 264, 436–440.

    Article  CAS  PubMed  Google Scholar 

  25. Androulakakis, P. A., Davaris, P., Karayannis, A., Michael, V., and Aghioutantis, C. (1992) Urothelial tumors of the bladder, Child Nephrol. Urol., 12, 32–34.

    CAS  PubMed  Google Scholar 

  26. Han, Y., Chen, J., Zhao, X., Liang, C., Wang, Y., Sun, L., Jiang, Z., Zhang, Z., Yang, R., and Chen, J. (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing, PLoS One, 6, e18286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, T., Dong, W., Huang, J., Pan, Q., Fan, X., Zhang, C., and Huang, L. (2009) MicroRNA-143 as a tumor suppressor for bladder cancer, J. Urol., 181, 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  28. Noguchi, S., Yasui, Y., Iwasaki, J., Kumazaki, M., Yamada, N., Naito, S., and Akao, Y. (2012) Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways, Cancer Lett., 328, 353–361.

    Article  PubMed  Google Scholar 

  29. Uchino, K., Takeshita, F., Takahashi, R. U., Kosaka, N., Fujiwara, K., Naruoka, H., Sonoke, S., Yano, J., Sasaki, H., Nozawa, S., et al. (2013) Therapeutic effects of microRNA582–5p and -3p on the inhibition of bladder cancer progression, Mol. Ther. (J. Am. Soc. Gene Ther.), 21, 610–619.

    Article  CAS  Google Scholar 

  30. Xu, X., Chen, H., Lin, Y., Hu, Z., Mao, Y., Wu, J., Xu, X., Zhu, Y., Li, S., and Zheng, X. (2013) MicroRNA-409–3p inhibits migration and invasion of bladder cancer cells via targeting c-Met, Mol. Cells, 36, 62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Majid, S., Dar, A. A., Saini, S., Deng, G., Chang, I., Greene, K., Tanaka, Y., Dahiya, R., and Yamamura, S. (2013) MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer, PLoS One, 8, e67686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao, X. P., Zhang, L. S., Huang, B., Zhou, S. Y., Liao, J., Chen, L. W., Qiu, S. P., and Chen, J. X. (2015) Mir-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer, J. Transl. Med., 13, 1–13.

    Article  CAS  Google Scholar 

  33. Jakob, J. A., Bassett, R. L., Jr., Ng, C. S., Curry, J. L., Joseph, R. W., Alvarado, G. C., Rohlfs, M. L., Richard, J., Gershenwald, J. E., Kim, K. B., Lazar, A. J., Hwu, P., and Davies, M. A. (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma, Cancer, 118, 4014–4023.

    Article  CAS  PubMed  Google Scholar 

  34. Kotoula, V., Sozopoulos, E., Litsiou, H., Fanourakis, G., Koletsa, T., Voutsinas, G., Tseleni-Balafouta, S., Mitsiades, C. S., Wellmann, A., and Mitsiades, N. (2009) Mutational analysis of the BRAF, RAS and EGFR genes in human adrenocortical carcinomas, Endocrine Rel. Cancer, 16, 565–572.

    Article  CAS  Google Scholar 

  35. Vaughn, C. P., Zobell, S. D., Furtado, L. V., Baker, C. L., and Samowitz, W. S. (2011) Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer, Genes Chromosomes Cancer, 50, 307–312.

    Article  CAS  PubMed  Google Scholar 

  36. Mulligan, G., Lichter, D. I., Bacco, A. D., Blakemore, S. J., Berger, A., Koenig, E., Bernard, H., Trepicchio, W., Li, B., and Neuwirth, R. (2014) Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to singleagent bortezomib therapy, Blood, 123, 632–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Irahara, N., Baba, Y. K., Shima, K., Yan, L., Dias, S. D., Iafrate, A. J., Fuchs, C. S., Haigis, K. M., and Ogino, S. (2010) NRAS mutations are rare in colorectal cancer, Diagn. Mol. Pathol. (Am. J. Surg. Pathol.), Part B, 19, 157–163.

    Article  CAS  Google Scholar 

  38. Fry, M. J. (2000) Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res., 3, 304–312.

    Article  Google Scholar 

  39. Martinez, L., Anel, A., Sierra, J., Pineiro, A., Naval, J., and Alava, M. (2000) Tyrosine phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase correlates with high proliferation rates in sublines derived from the Jurkat leukemia, Int. J. Biochem. Cell Biol., 32, 435–445.

    Article  Google Scholar 

  40. Krasilnikov, M., Adler, V., Fuchs, S. Y., Zheng, D., Haimovitz-Friedman, A., Herlyn, M., and Ronai, Z. E. (1999) Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells, Mol. Carcinogen., 24, 64–69.

    Article  CAS  Google Scholar 

  41. Lin, X., Bohle, A., Dohrmann, P., Leuschner, I., Schulz, A., Kremer, B., and Fandrich, F. (2001) Overexpression of phosphatidylinositol 3-kinase in human lung cancer, Langenbeck’s Arch. Surg., 386, 293–301.

    Article  CAS  Google Scholar 

  42. Kaminska, B., and Swiatek-Machado, K. (2014) Targeting signaling pathways with small molecules to treat autoimmune disorders, Exp. Rev. Clin. Immunol., 4, 93–112.

    Article  Google Scholar 

  43. Jackson, M., Howle, S. E. M., Weller, R. J., Sabin, E., Hunter, J. A. A., and Mckenzie, R. C. (1999) Psoriatic keratinocytes show reduced IRF-1 and STAT-1a activation in response to κ-IFN, FASEB, 13, 495–502.

    CAS  Google Scholar 

  44. Yamazaki, F., Aragane, Y., Maeda, A., Matsushita, K., Ueno, K., Yudate, T., Kawada, A., and Tezuka, T. (2002) Overactivation of IL-4-induced activator protein-1 in atopic dermatitis, J. Dermatol. Sci., 28, 227–233.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitao Wu.

Additional information

These authors contributed equally to this work.

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 4, pp. 644-654.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-330, December 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shan, Z., Liu, C. et al. MicroRNA-294 promotes cellular proliferation and motility through the PI3K/AKT and JAK/STAT pathways by upregulation of NRAS in bladder cancer. Biochemistry Moscow 82, 474–482 (2017). https://doi.org/10.1134/S0006297917040095

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917040095

Keywords

Navigation