Skip to main content
Log in

Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common type of age-related dementia. The development of neurodegeneration in AD is closely related to alterations in neurotrophic supplementation of the brain, which may be caused either by disorder of neurotrophin metabolism or by modification of its availability due to changes in the microenvironment of neurons. The underlying mechanisms are not fully understood. In this work, we used senescence-accelerated OXYS rats as a unique model of the sporadic form of AD to examine the relationship of development of AD signs and changes in neurotrophic supplementation of the cortex. Based on comparative analysis of the transcriptome of the frontal cerebral cortex of OXYS and Wistar (control) rats, genes of a neurotrophin signaling pathway with different mRNA levels in the period prior to the development of AD-like pathology in OXYS rats (20 days) and in the period of its active manifestation (5 months) and progression (18 months) were identified. The most significant changes in mRNA levels in the cortex of OXYS rats occurred in the period from 5 to 18 months of age. These genes were associated with neurogenesis, neuronal differentiation, synaptic plasticity, and immune response. The results were compared to changes in the levels of brain-derived neurotrophic factor (BDNF), its receptors TrkB and p75NTR, as well as with patterns of their colocalization, which reveal the balance of proneurotrophins and mature neurotrophins and their receptors. We found that alterations in neurotrophic balance indicating increased apoptosis precede the development of AD-like pathology in OXYS rats. Manifestation of AD-like pathology occurs against a background of activation of compensatory and regenerative processes including increased neurotrophic supplementation. Active progression of AD-like pathology in OXYS rats is accompanied by the suppression of activity of the neurotrophin system. Thus, the results confirm the importance of the neurotrophin system as a potential target for development of new approaches to slow age-related alterations in brain and AD development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid

AβPP:

Aβ precursor protein

AD:

Alzheimer’s disease

BDNF:

brain-derived neurotrophic factor

mBDNF:

mature form of BDNF protein

phosphoTrkB(Y817):

phosphorylated form of TrkB

proBDNF:

immature form of BDNF protein

RNA-seq:

method of massive parallel sequencing

TrkB:

tropomyosin tyrosine kinase receptor B

References

  1. Morley, J. E., Armbrecht, H. J., Farr, S. A., and Kumar, V. B. (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease, Biochim. Biophys. Acta, 1822, 650–656.

    Article  CAS  PubMed  Google Scholar 

  2. Rohe, M., Synowitz, M., Glass, R., Paul, S. M., Nykjaer, A., and Willnow, T. E. (2009) Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression, J. Neurosci., 29, 15472–15478.

    Article  CAS  PubMed  Google Scholar 

  3. Sotthibundhu, A., Sykes, A. M., Fox, B., Underwood, C. K., Thangnipon, W., and Coulson, E. J. (2008) ß-Amyloid 1–42 induces neuronal death through the p75 neurotrophin receptor, J. Neurosci., 28, 3941–3946.

    Article  CAS  PubMed  Google Scholar 

  4. Bothwell, M. (2014) NGF, BDNF, NT3 and NT4, in Neurotrophic Factors (Lewin, G. R., and Carter, B. D., eds.) Springer, Berlin, pp. 3–15.

  5. Dekkers, M. P. J., Nikoletopoulou, V., and Barde, Y. A. (2013) Death of developing neurons: new insights and implications for connectivity, J. Cell Biol., 203, 385–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshii, A., and Constantine-Paton, M. (2010) Post-synaptic BDNF-TrkB signaling in synapse maturation, plasticity and disease, Dev. Neurobiol., 70, 304–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Perini, G., Della-Bianca, V., Politi, V., Della Valle, G., Dal-Pra, I., Roßsi, F., and Armato, U. (2002) Role of p75 neurotrophin receptor in the neurotoxicity by ß-amyloid peptides and synergistic effect of inflammatory cytokines, J. Exp. Med., 195, 907–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jakob-Roetne, R., and Jacobsen, H. (2009) Alzheimer’s disease: from pathology to therapeutic approaches, Angew. Chem. Int. Ed. Engl., 48, 3030–3059.

    Article  CAS  PubMed  Google Scholar 

  9. De Calignon, A., Polydoro, M., Suarez-Calvet, M., William, C., Adamowicz, D. H., Kopeikina, K. J., Pitstick, R., Sahara, N., Ashe, K. H., Carlson, G. A., Spires-Jones, T. L., and Hyman, B. T. (2012) Propagation of tau pathology in a model of early Alzheimer’s disease, Neuron, 73, 685–697.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ceni, C., Unsain, N., Zeinieh, M. P., and Barker, P. A. (2014) Neurotrophins in the regulation of cellular survival and death, in Neurotrophic Factors (Lewin, G. R., and Carter, B. D., eds.) Springer, Berlin, pp. 193–221.

    Chapter  Google Scholar 

  11. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer’s disease, Cell Cycle, 13, 898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K. Y., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396–1413.

    Article  PubMed  Google Scholar 

  13. Stefanova, N. A., Maksimova, K. Y., Kiseleva, E., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal Res., 59, 163–177.

    Article  CAS  PubMed  Google Scholar 

  14. Loshchenova, P. S., Sinitsyna, O. I., Fedoseeva, L. A., Stefanova, N. A., and Kolosova, N. G. (2015) Influence of antioxidant SkQ1 on accumulation of mitochondrial DNA deletions in the hippocampus of senescence-accelerated OXYS rats, Biochemistry (Moscow), 80, 596–603.

    Article  CAS  Google Scholar 

  15. Maksimova, K. Yu., Logvinov, S. V., and Stefanova, N. A. (2015) Morphological characterization of OXYS and Wistar rat hippocampus in the aging process, Morfologiya, 147, 11–16.

    Google Scholar 

  16. Rudnitskaya, E. A., Maksimova, K. Y., Muraleva, N. A., Logvinov, S. V., Yanshole, L. V., Kolosova, N. G., and Stefanova, N. A. (2015) Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 16, 303–316.

    Article  CAS  PubMed  Google Scholar 

  17. Stefanova, N. A., Korbolina, E. E., Ershov, N. I., Rogaev, E. I., and Kolosova, N. G. (2015) Changes in the transcriptome of the prefrontal cortex of OXYS rats as the signs of Alzheimer’s disease development, Vavilov. Zh. Genet. Selekt., 19, 445–454.

    Google Scholar 

  18. Kim, W. R., and Sun, W. (2011) Programmed cell death during postnatal development of the rodent nervous system, Dev. Growth Differ., 53, 225–235.

    Article  PubMed  Google Scholar 

  19. Sergeeva, S., Bagryanskaya, E., Korbolina, E., and Kolosova, N. (2006) Development of behavioral dysfunctions in accelerated-senescence OXYS rats is associated with early postnatal alterations in brain phosphate metabolism, Exp. Gerontol., 41, 141–150.

    Article  CAS  PubMed  Google Scholar 

  20. Beregovoy, N. A., Sorokina, N. S., Starostina, M. V., and Kolosova, N. G. (2011) Age-specific peculiarities of formation long-term posttetanic potentiation on OXYS rats, Bull. Exp. Biol. Med., 151, 71–73.

    Article  CAS  PubMed  Google Scholar 

  21. Kolosova, N. G., Akulov, A. E., Stefanova, N. A., Moshkin, M. P., Savelov, A. A., Koptyug, I. V., Panov, A. V., and Vavilin, V. A. (2011) Effect of malate on development of rotenone-induced brain changes in Wistar and OXYS rats: an MRI study, Dokl. Biol. Sci., 437, 72–75.

    Article  CAS  PubMed  Google Scholar 

  22. Stefanova, N. A., Muraleva, N. A., Skulachev, V. P., and Kolosova, N. G. (2014) Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1, J. Alzheimers Dis., 38, 681–694.

    CAS  PubMed  Google Scholar 

  23. Braak, H., and Tredici, K. D. (2016) Potential pathways of abnormal tau and a-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases, Cold Spring Harb. Perspect. Biol., 8, 1–24.

    Article  Google Scholar 

  24. Park, H., and Poo, M. M. (2013) Neurotrophin regulation of neural circuit development and function, Nat. Rev. Neurosci., 14, 7–23.

    Article  CAS  PubMed  Google Scholar 

  25. Cazorla, M., Jouvenceau, A., Rose, C., Guilloux, J. P., Pilon, C., Dranovsky, A., and Premont, J. (2010) Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice, PLoS One, 5, 1–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Stefanova.

Additional information

Original Russian Text © E. A. Rudnitskaya, N. G. Kolosova, N. A. Stefanova, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 460-469.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnitskaya, E.A., Kolosova, N.G. & Stefanova, N.A. Impact of changes in neurotrophic supplementation on development of Alzheimer’s disease-like pathology in OXYS rats. Biochemistry Moscow 82, 318–329 (2017). https://doi.org/10.1134/S0006297917030105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030105

Keywords

Navigation