Skip to main content
Log in

Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Neurotrophic factors play a key role in development, differentiation, synaptogenesis, and survival of neurons in the brain as well as in the process of their adaptation to external influences. The serotonergic (5-HT) system is another major factor in the development and neuroplasticity of the brain. In the present review, the results of our own research as well as data provided in the corresponding literature on the interaction of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) with the 5-HT-system of the brain are considered. Attention is given to comparison of BDNF and GDNF, the latter belonging to a different family of neurotrophic factors and being mainly considered as a dopaminergic system controller. Data cited in this review show that: (i) BDNF and GDNF interact with the 5-HT-system of the brain through feedback mechanisms engaged in autoregulation of the complex involving 5-HT-system and neurotrophic factors; (ii) GDNF, as well as BDNF, stimulates the growth of 5-HT neurons and affects the expression of key genes of the brain 5-HT-system–those coding tryptophan hydroxylase-2 and 5-HT1A and 5-HT2A receptors. In turn, 5-HT affects the expression of genes that control BDNF and GDNF in brain structures; (iii) the difference between BDNF and GDNF is manifested in different levels and relative distribution of expression of these factors in brain structures (BDNF expression is highest in hippocampus and cortex, GDNF expression in the striatum), in varying reaction of 5-HT2A receptors on BDNF and GDNF administration, and in different effects on certain types of behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

DA:

dopamine

GDNF:

glial cell line-derived neurotrophic factor

GFRα1–4:

glycosylphosphatidylinositol (GPI)-linked cell surface receptors

5-HT:

serotonin or 5-hydroxytryptamine

5HT-system:

serotonergic system of the brain

SERT:

serotonin transporter

TGFβ:

transforming growth factor β

TPH-2:

tryptophan hydroxylase-2

TrkB:

tropomyosin-related kinase B receptor

UTR:

untranslated region

References

  1. Gomazkov, O. A. (2007) Growth and neurotrophic factors in the regulation of stem cell transformation and neurogenesis, Neirokhimiya, 24, 101–112.

    CAS  Google Scholar 

  2. Popova, N. K., and Morozova, M. V. (2013) Brain-derived neurotrophic factor: the influence on the genetically and epigenetically determined behavioral disorders, Ross. Fiziol. Zh. im. Sechenova, 99, 1125–1137.

    CAS  Google Scholar 

  3. Weissmiller, A. M., and Wu, C. (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders, Transl. Neurodegener., 1, doi: 10.1186/2047–9158–1–14.

    Google Scholar 

  4. Homberg, J. R., Molteni, R., Calabrese, F., and Riva, M. A. (2014) The serotonin-BDNF duo: developmental implications for the vulnerability to psychopathology, Neurosci. Biobehav. Rev., 43, 35–47.

    Article  CAS  PubMed  Google Scholar 

  5. Nathanson, N. M. (2012) Regulation of neurokine receptor signaling and trafficking, Neurochem. Int., 61, 874–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Voutilainen, M. H., Arumae, U., Airavaara, M., and Saarma, M. (2015) Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson’s disease, FEBS Lett., 589, 3739–3748.

    Article  CAS  PubMed  Google Scholar 

  7. Levi-Montalcini, R. (1952) Effects of mouse tumor transplantation on the nervous system, Ann. NY Acad. Sci., 55, 330–344.

    Article  CAS  PubMed  Google Scholar 

  8. Barde, Y. A., Edgar, D., and Thoenen, H. (1982) Purification of a new neurotrophic factor from mammalian brain, EMBO J., 1, 549–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen-Cory, S., Kidane, A. H., Shirkey, N. J., and Marshak, S. (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity, Dev. Neurobiol., 70, 271–288.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoyng, S. A., Tannemaat, M. R., De Winter, F., Verhaagen, J., and Malessy, M. J. (2011) Nerve surgery and gene therapy: a neurobiological and clinical perspective, J. Hand. Surg. Eur., 36, 735–746.

    Article  CAS  Google Scholar 

  11. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., and Collins, F. (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons, Science, 260, 1130–1132.

    Article  CAS  PubMed  Google Scholar 

  12. Popova, N. K., Naumenko, E. V., and Kolpakov, V. G. (1978) Serotonin and Behavior [in Russian], Nauka, Novosibirsk, p.304.

    Google Scholar 

  13. Naumenko, E. V. (1973) Central Regulation of the Pituitary–Adrenal Complex, Plenum Publisher Corp., NY London.

    Google Scholar 

  14. Linnoila, V. M., and Virkkunen, M. (1992) Aggression, suicidality, and serotonin, J. Clin. Psychiatry, 53, 46–51.

    PubMed  Google Scholar 

  15. Arango, V., Huang, Y. Y., Underwood, M. D., and Mann, J. J. (2003) Genetics of the serotonergic system in suicidal behavior, J. Psychiatr. Res., 37, 375–386.

    Article  PubMed  Google Scholar 

  16. Ilchibaeva, T. V., Kondaurova, E. M., Tsybko, A. S., Kozhemyakina, R. V., Popova, N. K., and Naumenko, V. S. (2015) Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression, Behav. Brain Res., 290, 45–50.

    Article  CAS  PubMed  Google Scholar 

  17. Ilchibaeva, T. V., Tsybko, A. S., Kozhemyakina, R. V., Popova, N. K., and Naumenko, V. S. (2016) Glial cell linederived neurotrophic factor in genetically defined fearinduced aggression, Eur. J. Neurosci., 44, 2467–2473.

    Article  PubMed  Google Scholar 

  18. West, A. E., Pruunsild, P., and Timmusk, T. (2014) Neurotrophins: transcription and translation, Handb. Exp. Pharmacol., 220, 67–100.

    Article  CAS  PubMed  Google Scholar 

  19. Aid, T., Kazantseva, A., Piirsoo, M., Palm, K., and Timmusk, T. (2007) Mouse and rat BDNF gene structure and expression revisited, J. Neurosci. Res., 85, 525–535.

    Article  CAS  PubMed  Google Scholar 

  20. Benarroch, E. E. (2015) Brain-derived neurotrophic factor: regulation, effects, and potential clinical relevance, Neurology, 84, 1693–1704.

    Article  PubMed  Google Scholar 

  21. Martinez-Levy, G. A., and Cruz-Fuentes, C. S. (2014) Genetic and epigenetic regulation of the brain-derived neurotrophic factor in the central nervous system, Yale J. Biol. Med., 87, 173–186.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karpova, N. N. (2014) Role of BDNF epigenetics in activity-dependent neuronal plasticity, Neuropharmacology, 76, 709–718.

    Article  CAS  PubMed  Google Scholar 

  23. An, J. J., Gharami, K., Liao, G. Y., Woo, N. H., Lau, A. G., Vanevski, F., Torre, E. R., Jones, K. R., Feng, Y., Lu, B., and Xu, B. (2008) Distinct role of long 3'-UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons, Cell, 134, 175–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau, A. G., Irier, H. A., Gu, J., Tian, D., Ku, L., Liu, G., Xia, M., Fritsch, B., Zheng, J. Q., Dingledine, R., Xu, B., Lu, B., and Feng, Y. (2010) Distinct 3'-UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF), Proc. Natl. Acad. Sci. USA, 107, 15945–15950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, B., Pang, P. T., and Woo, N. H. (2005) The yin and yang of neurotrophin action, Nat. Rev. Neurosci., 6, 603–614.

    Article  CAS  PubMed  Google Scholar 

  26. Naumenko, V. S., Kulikov, A. V., Kondaurova, E. M., Tsybko, A. S., Kulikova, E. A., Krasnov, I. B., Shenkman, B. S., Sychev, V. N., Bazhenova, E. Y., Sinyakova, N. A., and Popova, N. K. (2015) Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions, Neuroscience, 284, 730–736.

    Article  CAS  PubMed  Google Scholar 

  27. Kenchappa, R. S., Tep, C., Korade, Z., Urra, S., Bronfman, F. C., Yoon, S. O., and Carter, B. D. (2010) p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17, J. Biol. Chem., 285, 20358–20368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deinhardt, K., and Chao, M. V. (2014) Shaping neurons: long and short range effects of mature and proBDNF signaling upon neuronal structure, Neuropharmacology, 76, 603–609.

    Article  CAS  PubMed  Google Scholar 

  29. Borodinova, A. A., and Salozhin, S. V. (2016) Diversity of proBDNF and mBDNF functions in the central nervous system, Zh. Vyssh. Nerv. Deyat. im. Pavlova, 66, 3–23.

    CAS  Google Scholar 

  30. Lanni, C., Stanga, S., Racchi, M., and Govoni, S. (2010) The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders, Curr. Pharm. Des., 16, 698–717.

    Article  CAS  PubMed  Google Scholar 

  31. Sopova, K., Gatsiou, K., Stellos, K., and Laske, C. (2014) Dysregulation of neurotrophic and hematopoietic growth factors in Alzheimer’s disease: from pathophysiology to novel treatment strategies, Curr. Alzheimer Res., 11, 27–39.

    Article  CAS  PubMed  Google Scholar 

  32. Budni, J., Bellettini-Santos, T., Mina, F., Garcez, M. L., and Zugno, A. I. (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease, Aging Dis., 6, 331–341.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beeri, M. S., and Sonnen, J. (2016) Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer’s disease progression, Neurology, 86, 702–703.

    Article  PubMed  Google Scholar 

  34. He, Y. Y., Zhang, X. Y., Yung, W. H., Zhu, J. N., and Wang, J. J. (2013) Role of BDNF in central motor structures and motor diseases, Mol. Neurobiol., 48, 783–793.

    Article  CAS  PubMed  Google Scholar 

  35. Zuccato, C., and Cattaneo, E. (2014) Huntington’s disease, Handbook Exp. Pharmacol., 220, 357–409.

    Article  CAS  Google Scholar 

  36. Nguyen, K. Q., Rymar, V. V., and Sadikot, A. F. (2016) Impaired TrkB signaling underlies reduced BDNF-mediated trophic support of striatal neurons in the R6/2 mouse model of Huntington’s disease, Front. Cell Neurosci., 10, doi: 10.3389/fncel.2016.00037.

  37. Paillard, T., Rolland, Y., and De Souto Barreto, P. (2015) Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review, J. Clin. Neurol., 11, 212–219.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pezet, S. (2014) Neurotrophins and pain, Biol. Aujourd’hui, 208, 21–29.

    Article  CAS  Google Scholar 

  39. Khan, N., and Smith, M. T. (2015) Neurotrophins and neuropathic pain: role in pathobiology, Molecules, 20, 10657–10688.

    Article  CAS  PubMed  Google Scholar 

  40. Ahmed, A. O., Mantini, A. M., Fridberg, D. J., and Buckley, P. F. (2015) Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis, Psychiatry Res., 226, 1–13.

    Article  PubMed  Google Scholar 

  41. Libman-Sokolowska, M., Drozdowicz, E., and Nasierowski, T. (2015) BDNF as a biomarker in the course and treatment of schizophrenia, Psychiatr. Pol., 49, 1149–1158.

    Article  PubMed  Google Scholar 

  42. Autry, A. E., and Monteggia, L. M. (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders, Pharmacol. Rev., 64, 238–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scola, G., and Andreazza, A. C. (2015) The role of neurotrophins in bipolar disorder, Prog. Neuropsychopharmacol. Biol. Psychiatry, 56, 122–128.

    Article  CAS  PubMed  Google Scholar 

  44. Li, X., and Wolf, M. E. (2015) Multiple faces of BDNF in cocaine addiction, Behav. Brain Res., 279, 240–254.

    Article  CAS  PubMed  Google Scholar 

  45. Pitts, E. G., Taylor, J. R., and Gourley, S. L. (2016) Prefrontal cortical BDNF: a regulatory key in cocaineand food-reinforced behaviors, Neurobiol. Dis., 91, 326–335.

    Article  CAS  PubMed  Google Scholar 

  46. Rumajogee, P., Madeira, A., Verge, D., Hamon, M., and Miquel, M. C. (2002) Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms, J. Neurochem., 83, 1525–1528.

    Article  CAS  PubMed  Google Scholar 

  47. Celada, P., Siuciak, J. A., Tran, T. M., Altar, C. A., and Tepper, J. M. (1996) Local infusion of brain-derived neurotrophic factor modifies the firing pattern of dorsal raphe serotonergic neurons, Brain Res., 712, 293–298.

    Article  CAS  PubMed  Google Scholar 

  48. Siuciak, J. A., Boylan, C., Fritsche, M., Altar, C. A., and Lindsay, R. M. (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration, Brain Res., 710, 11–20.

    Article  CAS  PubMed  Google Scholar 

  49. Mamounas, L. A., Altar, C. A., Blue, M. E., Kaplan, D. R., Tessarollo, L., and Lyons, W. E. (2000) BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain, J. Neurosci., 20, 771–782.

    CAS  PubMed  Google Scholar 

  50. Naumenko, V. S., Kondaurova, E. M., Bazovkina, D. V., Tsybko, A. S., Tikhonova, M. A., Kulikov, A. V., and Popova, N. K. (2012) Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains, Neuroscience, 214, 59–67.

    Article  CAS  PubMed  Google Scholar 

  51. Naumenko, V. S., Bazovkina, D. V., Morozova, M. V., and Popova, N. K. (2013) Effects of brain-derived and glial cell line-derived neurotrophic factors on startle response and disrupted prepulse inhibition in mice of DBA/2J inbred strain, Neurosci. Lett., 550, 115–118.

    Article  CAS  PubMed  Google Scholar 

  52. Lyons, W. E., Mamounas, L. A., Ricaurte, G. A., Coppola, V., Reid, S. W., Bora, S. H., Wihler, C., Koliatsos, V. E., and Tessarollo, L. (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities, Proc. Natl. Acad. Sci. USA, 96, 15239–15244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trajkovska, V., Santini, M. A., Marcussen, A. B., Thomsen, M. S., Hansen, H. H., Mikkelsen, J. D., Arneberg, L., Kokaia, M., Knudsen, G. M., and Aznar, S. (2009) BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures, Neurochem. Int., 55, 697–702.

    Article  CAS  PubMed  Google Scholar 

  54. Rios, M., Fan, G., Fekete, C., Kelly, J., Bates, B., Kuehn, R., Lechan, R. M., and Jaenisch, R. (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity, Mol. Endocrinol., 15, 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  55. Rios, M., Lambe, E. K., Liu, R., Teillon, S., Liu, J., Akbarian, S., Roffler-Tarlov, S., Jaenisch, R., and Aghajanian, G. K. (2006) Severe deficits in 5-HT2A-mediated neurotransmission in BDNF conditional mutant mice, J. Neurobiol., 66, 408–420.

    Article  CAS  PubMed  Google Scholar 

  56. Klein, A. B., Santini, M. A., Aznar, S., Knudsen, G. M., and Rios, M. (2010) Changes in 5-HT2A-mediated behavior and 5-HT2Aand 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice, Neuroscience, 169, 1007–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Galter, D., and Unsicker, K. (2000) Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic neuronal phenotype, Mol. Cell. Neurosci., 15, 446–455.

    Article  CAS  PubMed  Google Scholar 

  58. Vaidya, V. A., Marek, G. J., Aghajanian, G. K., and Duman, R. S. (1997) 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex, J. Neurosci., 17, 2785–2795.

    CAS  PubMed  Google Scholar 

  59. Molteni, R., Cattaneo, A., Calabrese, F., Macchi, F., Olivier, J. D., Racagni, G., Ellenbroek, B. A., Gennarelli, M., and Riva, M. A. (2010) Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans, Neurobiol. Dis., 37, 747–755.

    Article  CAS  PubMed  Google Scholar 

  60. Calabrese, F., Guidotti, G., Middelman, A., Racagni, G., Homberg, J., and Riva, M. A. (2013) Lack of serotonin transporter alters BDNF expression in the rat brain during early postnatal development, Mol. Neurobiol., 48, 244–256.

    Article  CAS  PubMed  Google Scholar 

  61. Calabrese, F., van der Doelen, R. H., Guidotti, G., Racagni, G., Kozicz, T., Homberg, J. R., and Riva, M. A. (2015) Exposure to early life stress regulates BDNF expression in SERT mutant rats in an anatomically selective fashion, J. Neurochem., 132, 146–154.

    Article  CAS  PubMed  Google Scholar 

  62. Schiller, L., Donix, M., Jahkel, M., and Oehler, J. (2006) Serotonin 1A and 2A receptor densities, neurochemical and behavioral characteristics in two closely related mice strains after long-term isolation, Prog. Neuropsychopharmacol. Biol. Psychiatry, 30, 492–503.

    Article  CAS  PubMed  Google Scholar 

  63. Lang, U. E., Gunther, L., Scheuch, K., Klein, J., Eckhart, S., Hellweg, R., Danker-Hopfe, H., and Oehler, J. (2009) Higher BDNF concentrations in the hippocampus and cortex of an aggressive mouse strain, Behav. Brain Res., 197, 246–249.

    Article  CAS  PubMed  Google Scholar 

  64. Popova, N. K. (2006) From genes to aggressive behavior: the role of serotonergic system, Bioessays, 28, 495–503.

    Article  CAS  PubMed  Google Scholar 

  65. Popova, N. K., Voitenko, N. N., Kulikov, A. V., and Avgustinovich, D. F. (1991) Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes, Pharmacol. Biochem. Behav., 40, 751–756.

    Article  CAS  PubMed  Google Scholar 

  66. Popova, N. K., Naumenko, V. S., Plyusnina, I. Z., and Kulikov, A. V. (2005) Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats, J. Neurosci. Res., 80, 286–292.

    Article  CAS  PubMed  Google Scholar 

  67. Maragakis, N. J., and Rothstein, J. D. (2006) Mechanisms of disease: astrocytes in neurodegenerative disease, Nat. Clin. Pract. Neurol., 2, 679–689.

    Article  CAS  PubMed  Google Scholar 

  68. Capani, F., Quarracino, C., Caccuri, R., and Sica, R. E. (2016) Astrocytes as the main players in primary degenerative disorders of the human central nervous system, Front. Aging Neurosci., 8, doi: 10.3389/fnagi.2016.00045.

  69. Pascual, A., Hidalgo-Figueroa, M., Gomez-Diaz, R., and Lopez-Barneo, J. (2011) GDNF and protection of adult central catecholaminergic neurons, J. Mol. Endocrinol., 46, 83–92.

    Article  Google Scholar 

  70. Ibanez, C. F., and Andressoo, J. O. (2016) Biology of GDNF and its receptors–relevance for disorders of the central nervous system, Neurobiol. Dis., doi: 10.1016/j.nbd.2016.01.021.

    Google Scholar 

  71. Airaksinen, M. S., and Saarma, M. (2002) The GDNF family: signaling, biological functions and therapeutic value, Nat. Rev. Neurosci., 3, 383–394.

    Article  CAS  PubMed  Google Scholar 

  72. Sariola, H., and Saarma, M. (2003) Novel functions and signaling pathways for GDNF, J. Cell Sci., 116, 3855–3862.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, X. L., Chen, B. Y., Duan, L., Xia, Y., Luo, Z. J., Wang, J. J., Rao, Z. R., and Chen, L. W. (2014) The proform of glia cell line-derived neurotrophic factor: a potentially biologically active protein, Mol. Neurobiol., 49, 234–250.

    Article  CAS  PubMed  Google Scholar 

  74. Immonen, T., Alakuijala, A., Hytonen, M., Sainio, K., Poteryaev, D., Saarma, M., Pasternack, M., and Sariola, H. (2008) A proGDNF-related peptide BEP increases synaptic excitation in rat hippocampus, Exp. Neurol., 210, 793–796.

    Article  CAS  PubMed  Google Scholar 

  75. Bradley, L. H., Fuqua, J., Richardson, A., TurchanCholewo, J., Ai, Y., Kelps, K. A., Glass, J. D., He, X., Zhang, Z., Grondin, R., Littrell, O. M., Huettl, P., Pomerleau, F., Gash, D. M., and Gerhardt, G. A. (2010) Dopamine neuron stimulating actions of a GDNF propeptide, PLoS One, 5, doi: 10.1371/journal.pone.0009752.

  76. Saavedra, A., Baltazar, G., and Duarte, E. P. (2008) Driving GDNF expression: the green and the red traffic lights, Prog. Neurobiol., 86, 186–215.

    Article  CAS  PubMed  Google Scholar 

  77. Ledda, F., Paratcha, G., Sandoval-Guzman, T., and Ibanez, C. F. (2007) GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion, Nat. Neurosci., 10, 293–300.

    Article  CAS  PubMed  Google Scholar 

  78. Naumenko, V. S., Kondaurova, E. M., Bazovkina, D. V., Tsybko, A. S., Ilchibaeva, T. V., Khotskin, N. V., Semenova, A. A., and Popova, N. K. (2014) Effect of GDNF on depressive-like behavior, spatial learning and key genes of the brain dopamine system in genetically predisposed to behavioral disorders mouse strains, Behav. Brain Res., 274, 1–9.

    Article  CAS  PubMed  Google Scholar 

  79. Igarashi, Y., Chiba, H., Utsumi, H., Miyajima, H., Ishizaki, T., Gotoh, T., Kuwahara, K., Tobioka, H., Satoh, M., Mori, M., and Sawada, N. (2000) Expression of receptors for glial cell line-derived neurotrophic factor (GDNF) and neurturin in the inner blood-retinal barrier of rats, Cell Struct. Funct., 25, 237–241.

    Article  CAS  PubMed  Google Scholar 

  80. Nishikiori, N., Osanai, M., Chiba, H., Kojima, T., Mitamura, Y., Ohguro, H., and Sawada, N. (2007) Glial cell-derived cytokines attenuate the breakdown of vascular integrity in diabetic retinopathy, Diabetes, 56, 1333–1340.

    Article  CAS  PubMed  Google Scholar 

  81. Shimizu, F., Sano, Y., Saito, K., Abe, M. A., Maeda, T., Haruki, H., and Kanda, T. (2012) Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier, Neurochem. Res., 37, 401–409.

    Article  CAS  PubMed  Google Scholar 

  82. Rocha, S. M., Cristovão, A. C., Campos, F. L., Fonseca, C. P., and Baltazar, G. (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation, Neurobiol. Dis., 47, 407–415.

    Article  CAS  PubMed  Google Scholar 

  83. Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U., and Patel, N. K. (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration, Pharmacol. Ther., 138, 155–175.

    Article  CAS  PubMed  Google Scholar 

  84. Lin, P. Y., and Tseng, P. T. (2015) Decreased glial cell linederived neurotrophic factor levels in patients with depression: a meta-analytic study, J. Psychiatr. Res., 63, 20–27.

    Article  PubMed  Google Scholar 

  85. Liu, Q., Zhu, H. Y., Li, B., Wang, Y. Q., Yu, J., and Wu, G. C. (2012) Chronic clomipramine treatment restores hippocampal expression of glial cell line-derived neurotrophic factor in a rat model of depression, J. Affect. Disord., 141, 367–372.

    Article  CAS  PubMed  Google Scholar 

  86. Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., Suzuki, T., Miyata, N., and Watanabe, Y. (2011) Epigenetic status of GDNF in the ventral striatum determines susceptibility and adaptation to daily stressful events, Neuron, 69, 359–372.

    Article  CAS  PubMed  Google Scholar 

  87. Verity, A. N., Wyatt, T. L., Lee, W., Hajos, B., Baecker, P. A., Eglen, R. M., and Johnson, R. M. (1999) Differential regulation of glial cell line-derived neurotrophic factor (GDNF) expression in human neuroblastoma and glioblastoma cell lines, J. Neurosci. Res., 55, 187–197.

    Article  CAS  PubMed  Google Scholar 

  88. Nakashima, S., Matsuyama, Y., Yu, Y., Kiuchi, K., and Ishiguro, N. (2004) Suppression of GDNF production by MPSS treatment following spinal cord injury in the rat, Neuroreport, 15, 2337–2340.

    Article  CAS  PubMed  Google Scholar 

  89. Henkel, A. W., Alali, H., Devassy, A., Alawadi, M. M., and Redzic, Z. B. (2014) Antagonistic interactions between dexamethasone and fluoxetine modulate morphodynamics and expression of cytokines in astrocytes, Neuroscience, 280, 318–327.

    Article  CAS  PubMed  Google Scholar 

  90. McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N., and Nasca, C. (2015) Mechanisms of stress in the brain, Nat. Neurosci., 18, 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maheu, M., Lopez, J. P., Crapper, L., Davoli, M. A., Turecki, G., and Mechawar, N. (2015) MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signaling in depression, Transl. Psychiatry, 5, doi: 10.1038/tp.2015.11.

  92. Ducray, A., Krebs, S. H., Schaller, B., Seiler, R. W., Meyer, M., and Widmer, H. R. (2006) GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon, Brain Res., 1069, 104–112.

    Article  CAS  PubMed  Google Scholar 

  93. Semenova, A. A., Bazovkina, D. B., Tsybko, A. S., Naumenko, V. S., and Popova, N. K. (2013) Effect of GDNF on the behavior of ASC mice with high hereditary predisposition to catalepsy, Zh. Vyssh. Nerv. Deyat. im. Pavlova, 63, 495–501.

    CAS  Google Scholar 

  94. Naumenko, V. S., Bazovkina, D. V., Semenova, A. A., Tsybko, A. S., Il’chibaeva, T. V., Kondaurova, E. M., and Popova, N. K. (2013) Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders, J. Neurosci. Res., 91, 1628–1638.

    Article  CAS  PubMed  Google Scholar 

  95. Tsybko, A. S., Il’chibaeva, T. V., Kondaurova, E. M., Bazovkina, D. V., and Naumenko, V. S. (2014) The effect of central administration of the neurotrophic factors BDNF and GDNF on the functional activity and expression of the serotonin 5-HT2A receptors in mice genetically predisposed to depressive-like behavior, Mol. Biol. (Moscow), 48, 983–989.

    Article  CAS  Google Scholar 

  96. Hisaoka, K., Nishida, A., Takebayashi, M., Koda, T., Yamawaki, S., and Nakata, Y. (2004) Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells, Brain Res., 1002, 167–170.

    Article  CAS  PubMed  Google Scholar 

  97. Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) mRNA expression via the transactivation of fibroblast growth factor receptor 2 (FGFR2) in rat C6 glioma cells, J. Neurochem., 106, 244–257.

    Article  CAS  PubMed  Google Scholar 

  98. Menegola, E., Broccia, M. L., Di Renzo, F., Massa, V., and Giavini, E. (2004) Effects of excess and deprivation of serotonin on in vitro neuronal differentiation, In vitro Cell. Dev. Biol. Anim., 40, 52–56.

    Article  CAS  PubMed  Google Scholar 

  99. Hisaoka, K., Nishida, A., Koda, T., Miyata, M., Zensho, H., Morinobu, S., Ohta, M., and Yamawaki, S. (2001) Antidepressant drug treatments induce glial cell linederived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells, J. Neurochem., 79, 25–34.

    Article  CAS  PubMed  Google Scholar 

  100. Mercier, G., Lennon, A. M., Renouf, B., Dessouroux, A., Ramauge, M., Courtin, F., and Pierre, M. (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes, J. Mol. Neurosci., 24, 207–216.

    Article  CAS  PubMed  Google Scholar 

  101. Golan, M., Schreiber, G., and Avißsar, S. (2011) Antidepressants elevate GDNF expression and release from C6 glioma cells in a ß-arrestin1-dependent, CREB interactive pathway, Int. J. Neuropsychopharmacol., 14, 1289–1300.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, X., Zhang, Z., Xie, C., Xi, G., Zhou, H., Zhang, Y., and Sha, W. (2008) Effect of treatment on serum glial cell line-derived neurotrophic factor in depressed patients, Prog. Neuropsychopharmacol. Biol. Psychiatry, 32, 886–890.

    Article  CAS  PubMed  Google Scholar 

  103. Naumenko, V. S., Popova, N. K., Lacivita, E., Leopoldo, M., and Ponimaskin, E. G. (2014) Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders, CNS Neurosci. Ther., 20, 582–590.

    Article  CAS  PubMed  Google Scholar 

  104. Montgomery, D. L. (1994) Astrocytes: form, functions, and roles in disease, Vet. Pathol., 31, 145–167.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Popova.

Additional information

Original Russian Text © N. K. Popova, T. V. Ilchibaeva, V. S. Naumenko, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 449-459.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.K., Ilchibaeva, T.V. & Naumenko, V.S. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochemistry Moscow 82, 308–317 (2017). https://doi.org/10.1134/S0006297917030099

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030099

Keywords

Navigation