Skip to main content
Log in

Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Investigation of biochemical mechanisms underlying the long-term storage of information in nervous system is one of main problems of modern neurobiology. As a molecular basis of long-term memory, long-term changes in kinase activities, increase in the level and changes in the subunit composition of receptors in synaptic membranes, local activity of prion-like proteins, and epigenetic modifications of chromatin have been proposed. Perhaps a combination of all or of some of these factors underlies the storage of long-term memory in the brain. Many recent studies have shown an exclusively important role of atypical protein kinases (PKCζ, PKMζ, and PKCι/λ) in processes of learning, consolidation and maintenance of memory. The present review is devoted to consideration of mechanisms of transcriptional and translational control of atypical protein kinases and their roles in induction and maintenance of long-term synaptic plasticity and memory in vertebrates and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid receptor

aPKC:

atypical protein kinase C

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

cAMP:

cyclic adenosine monophosphate

CBP:

CREB-binding protein

CRE:

cAMP response-element

CREB:

a protein binding cAMP-sensitive element (CRE-binding protein)

DAG:

diacylglycerol

DNMT:

DNA methyltransferase

DTEs:

dendritic targeting elements

E-LTP/L-LTP:

early/late longterm potentiation

ERK:

extracellular signal-regulated kinase

GluA:

subunit of glutamate receptor AMPA

GluA1AMPA/GluA2-AMPA:

glutamate AMPA-receptor containing GluA1/GluA2 subunit

HDAC:

histone deacetylase

LTP:

longterm potentiation

mTOR:

mammalian target of rapamycin

PICK1:

protein interacting with C kinase

PI3K:

phosphoinositide-3-kinase

PIN1:

peptidyl-prolyl cis-trans isomerase NIMA-interacting 1

PKA:

protein kinase A

PKC:

protein kinase C

PKCλ:

protein kinase Cλ

PKMζ:

protein kinase Mζ

PS:

phosphatidylserine

shRNA:

short hairpin RNA

TSA:

trichostatin A

uORF:

upstream open reading frame

UTRs:

untranslated regions

ZIP:

Zeta Inhibitory Peptide

References

  1. Sacktor, T. C. (2012) Memory maintenance by PKMζ–an evolutionary perspective, Mol. Brain, 5, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morris, M. J., and Monteggia, L. M. (2014) Role of DNA methylation and the DNA methyltransferases in learning and memory, Dialogues Clin. Neurosci., 16, 359–371.

    PubMed  PubMed Central  Google Scholar 

  3. Ling, D. S., Benardo, L. S., Serrano, P. A., Blace, N., Kelly, M. T., Crary, J. F., and Sacktor, T. C. (2002) Protein kinase M? is necessary and sufficient for LTP maintenance, Nat. Neurosci., 5, 295–296.

    Article  CAS  PubMed  Google Scholar 

  4. Serrano, P., Yudong, Y., and Sacktor, T. C. (2005) Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation, J. Neurosci., 25, 1979–1984.

    Article  CAS  PubMed  Google Scholar 

  5. Yao, Y., Kelly, M. T., Sajikumar, S., Serrano, P., Tian, D., Bergold, P. J., Frey, J. U., and Sacktor, T. C. (2008) PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors, J. Neurosci., 28, 7820–7827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsokas, P., Hsieh, C., Yao, Y., Lesburgueres, E., Wallace, E. J., Tcherepanov, A., Jothianandan, D., Hartley, B. R., Pan, L., Rivard, B., Farese, R. V., Sajan, M. P., Bergold, P. J., Hernandez, A. I., Cottrell, J. E., Shouval, H. Z., Fenton, A. A., and Sacktor, T. C. (2016) Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice, eLife, 5, e14846.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Drier, E. A., Tello, M. K., Cowan, M., Wu, P., Blace, N., Sacktor, T. C., and Jin, J. C. (2002) Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster, Nat. Neurosci., 5, 316–324.

    Article  CAS  PubMed  Google Scholar 

  8. Cai, D., Pearce, K., Chen, S., and Glanzman, D. L. (2011) Protein kinase M maintains long-term sensitization and long-term facilitation in aplysia, J. Neurosci., 31, 6421–6431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, S., Cai, D., Pearce, K., Sun, P. Y., Roberts, A. C., and Glanzman, D. L. (2014) Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia, Elife, 3, e03896.

    PubMed  PubMed Central  Google Scholar 

  10. Balaban, P. M., Roshchin, M., Timoshenko, A. Kh., Zuzina, A. B., Lemak, M., Ierusalimsky, V. N., Aseyev, N. A., and Malyshev, A. Y. (2015) Homolog of protein kinase Mzeta maintains context aversive memory and underlying long-term facilitation in terrestrial snail Helix, Front. Cell Neurosci., 9, 222.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pastalkova, E., Serrano, P., Pinkhasova, D., Wallace, E., Fenton, A. A., and Sacktor, T. C. (2006) Storage of spatial information by the maintenance mechanism of LTP, Science, 313, 1141–1144.

    Article  CAS  PubMed  Google Scholar 

  12. Serrano, P., Friedman, E. L., Kenney, J., Taubenfeld, S. M., Zimmerman, J. M., Hanna, J., Alberini, C., Kelley, A. E., Maren, S., Rudy, J. W., Yin, J. C., Sacktor, T. C., and Fenton, A. A. (2008) PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories, PLoS Biol., 6, 2698–2706.

    Article  CAS  PubMed  Google Scholar 

  13. Migues, P. V., Hardt, O., Wu, D. C., Gamache, K., Sacktor, T. C., Wang, Y. T., and Nader, K. (2010) PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking, Nat. Neurosci., 13, 630–634.

    Article  CAS  PubMed  Google Scholar 

  14. Evuarherhe, O., Barker, G. R., Savalli, G., Warburton, E. C., and Brown, M. W. (2014) Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus, Hippocampus, 24, 934–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shema, R., Sacktor, T. C., and Dudai, Y. (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM, Science, 317, 951–953.

    Article  CAS  PubMed  Google Scholar 

  16. Shema, R., Hazvi, S., Sacktor, T. C., and Dudai, Y. (2009) Boundary conditions for the maintenance of memory by PKMzeta in neocortex, Learn. Mem., 16, 122–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature, 334, 661–665.

    Article  CAS  PubMed  Google Scholar 

  18. Newton, A. C. (1997) Regulation of protein kinase C, Curr. Opin. Cell Biol., 9, 161–167.

    Article  CAS  PubMed  Google Scholar 

  19. Newton, A. C. (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm, Biochem. J., 370, 361–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ono, Y., Fujii, T., Ogita, K., Kikkawa, U., Igarashi, K., and Nishizuka, Y. (1989) Protein kinase C zeta subspecies from rat brain: its structure, expression, and properties, PNAS, 86, 3099–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakanishi, H., Brewer, K. A., and Exton, J. H. (1993) Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3, 4, 5-trisphosphate, J. Biol. Chem., 268, 13–16.

    CAS  PubMed  Google Scholar 

  22. Sacktor, T. C., Osten, P., Valsamis, H., Jiang, X., Naik, M. U., and Sublette, E. (1993) Persistent activation of the zeta isoform of protein kinase C in the maintenance of longterm potentiation, PNAS, 90, 8342–8346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez, A. I., Blace, N., Crary, J. F., Serrano, P. A., Leitges, M., Libien, J. M., Weinstein, G., Tcherapanov, A., and Sacktor, T. C. (2003) Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory, J. Biol. Chem., 278, 40305–40316.

    Article  CAS  PubMed  Google Scholar 

  24. Bougie, J. K., Lim, T., Farah, C. A., Manjunath, V., Nagakura, I., Ferraro, G. B., and Sossin, W. S. (2009) The atypical protein kinase C in Aplysia can form a protein kinase M by cleavage, J. Neurochem., 109, 1129–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marshall, B. S., Price, G., and Powell, C. T. (2000) Rat protein kinase C zeta gene contains alternative promoters for generation of dual transcripts with 5′-end heterogeneity, DNA Cell Biol., 19, 707–719.

    Article  CAS  PubMed  Google Scholar 

  26. Muslimov, I. A., Nimmrich, V., Hernandez, A. I., Tcherepanov, A., Sacktor, T. C., and Tiedge, H. (2004) Dendritic transport and localization of protein kinase Mzeta mRNA: implications for molecular memory consolidation, J. Biol. Chem., 279, 52613–52622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelly, M. T., Crary, J. F., and Sacktor, T. C. (2007) Regulation of protein kinase Mzeta synthesis by multiple kinases in long-term potentiation, J. Neurosci., 27, 3439–3444.

    Article  CAS  PubMed  Google Scholar 

  28. Hernandez, A. I., Oxberry, W. C., Crary, J. F., Mirra, S. S., and Sacktor, T. C. (2013) Cellular and subcellular localization of PKMζ, Philos. Trans. R Soc. Lond. B Biol. Sci., 369, 20130140.

    Article  PubMed  Google Scholar 

  29. Yerusalimsky, V. N., Borodinova, A. A., and Balaban, P. M. (2015) Localization of atypical protein kinase Cζ in the nervous system of the terrestrial mollusk Helix, Neirokhimiya, 32, 295–301.

    Google Scholar 

  30. Neri, L. M., Martelli, A. M., Borgatti, P., Colamussi, M. L., Marchisio, M., and Capitani, S. (1999) Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3, 4, 5) trisphosphate synthesis precedes PKC-zeta translocation to the nucleus of NGF-treated PC12 cells, FASEB J., 13, 2299–2310.

    CAS  PubMed  Google Scholar 

  31. Ko, H. G., Kim, J. I., Sim, S. E., Kim, T., Yoo, J., Choi, S. L., Baek, S. H., Yu, W. J., Yoon, J. B., Sacktor, T. C., and Kaang, B. K. (2016) The role of nuclear PKMζ in memory maintenance, Neurobiol. Learn. Mem., 135, 50–56.

    Article  CAS  PubMed  Google Scholar 

  32. Naik, M. U., Benedikz, E., Hernandez, I., Libien, J., Hrabe, J., Valsamis, M., Dow-Edwards, D., Osman, M., and Sacktor, T. C. (2000) Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain, J. Comp. Neurol., 426, 243–258.

    Article  CAS  PubMed  Google Scholar 

  33. Jaken, S. (1996) Protein kinase C isozymes and substrates, Curr. Opin. Cell Biol., 8, 168–173.

    Article  CAS  PubMed  Google Scholar 

  34. Naz, F., Islam, A., Ahmad, F., and Hassan, M. I. (2015) Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro, Mol. Cell Biochem., 410, 223–228.

    Article  CAS  PubMed  Google Scholar 

  35. Tobias, I. S., and Newton, A. C. (2016) Protein scaffolds control localized protein kinase C? activity, J. Biol. Chem., 291, 13809–13822.

    Article  CAS  PubMed  Google Scholar 

  36. Ren, S. Q., Yan, J. Z., Zhang, X. Y., Bu, Y. F., Pan, W. W., Yao, W., Tian, T., and Lu, W. (2013) PKC? is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP, EMBO J., 32, 1365–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bliss, T. V., and Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 232, 331–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jaafari, N., Henley, J. M., and Hanley, J. G. (2012) PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking, J. Neurosci., 32, 11618–11630.

    Article  CAS  PubMed  Google Scholar 

  39. Osten, P., Valsamis, L., Harris, A., and Sacktor, T. C. (1996) Protein synthesis-dependent formation of protein kinase Mzeta in long-term potentiation, J. Neurosci., 16, 2444–2451.

    CAS  PubMed  Google Scholar 

  40. Chen, C., Meng, S. Q., Xue, Y. X., Han, Y., Sun, C. Y., Deng, J. H., Chen, N., Bao, Y. P., Zhang, F. L., Cao, L. L., Zhu, W. G., Shi, J., Song, W. H., and Lu, L. (2016) Epigenetic modification of PKMζ rescues aging-related cognitive impairment, Sci. Rep., 6, 22096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ling, D. S., Benardo, L. S., and Sacktor, T. C. (2006) Protein kinase Mzeta enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors, Hippocampus, 16, 443–452.

    Article  CAS  PubMed  Google Scholar 

  42. Schuette, S. R., Fernandez-Fernandez, D., Lamla, T., Rosenbrock, H., and Hobson, S. (2016) Overexpression of protein kinase M? in the hippocampus enhances long-term potentiation and long-term contextual but not cued fear memory in rats, J. Neurosci., 36, 4313–4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, S. H., Liu, L., Wang, Y. T., and Sheng, M. (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD, Neuron, 36, 661–674.

    Article  CAS  PubMed  Google Scholar 

  44. Sacktor, T. C. (2011) How does PKMzeta maintain longterm memory? Nat. Rev. Neurosci., 12, 9–15.

    Article  CAS  PubMed  Google Scholar 

  45. Shema, R., Haramati, S., Ron, S., Hazvi, S., Chen, A., Cacktor, T. C., and Dudai, Y. (2011) Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex, Science, 331, 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  46. Kwapis, J. L., Jarome, T. J., Lonergan, M. E., and Helmstetter, F. J. (2009) Protein kinase Mzeta maintains fear memory in the amygdala but not in the hippocampus, Behav. Neurosci., 123, 844–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuzina, A. B., and Balaban, P. M. (2015) Extinction and reconsolidation of memory, Zh. Vyssh. Nerv. Deyat. im. Pavlova, 65, 564–576.

    CAS  Google Scholar 

  48. Kwapis, J. L., Jarome, T. J., Gilmartin, M. R., and Helmstetter, F. J. (2012) Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts foreground context fear memory, Neurobiol. Learn. Mem., 98, 148–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng, Z., Lubinski, A. J., and Page, T. L. (2015) Zeta inhibitory peptide (ZIP) erases long-term memories in a cockroach, Neurobiol. Learn. Mem., 118, 89–95.

    Article  CAS  PubMed  Google Scholar 

  50. Li, L., You, L., Sunyer, B., Patil, S., Hoger, H., Pollak, A., Stork, O., and Lubec, G. (2014) Hippocampal protein kinase C family members in spatial memory retrieval in the mouse, Behav. Brain Res., 258, 202–207.

    Article  CAS  PubMed  Google Scholar 

  51. Lee, A. M., Kanter, B. R., Wang, D., Lim, J. P., Zou, M. E., Qiu, C., McMahon, T., Dadgar, J., Fischbach-Weiss, S. C., and Messing, R. O. (2013) Prkcz null mice show normal learning and memory, Nature, 493, 416–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Volk, L. J., Bachman, J. L., Johnson, R., Yu, Y., and Huganir, R. L. (2013) PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory, Nature, 493, 420–423.

    Article  CAS  PubMed  Google Scholar 

  53. Palida, S. F., Butko, M. T., Ngo, J. T., Mackey, M. R., Gross, L. A., Ellisman, M. H., and Tsien, R. Y. (2015) PKMζ, but not PKCλ, is rapidly synthesized and degraded at the neuronal synapse, J. Neurosci., 35, 7736–7749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bal, N., Susorov, D., Chesnokova, E., Kasyanov, A., Mikhailova, T., Alkalaeva, E., Balaban, P., and Kolosov, P. (2016) uORFs located in the 5′-UTR of PKMζ mRNA regulate its translation, Front. Mol. Neurosci., 9, 103.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Westmark, P. R., Westmark, C. J., Wang, S., Levenson, J., O’Riordan, K. J., Burger, C., and Malter, J. S. (2010) Pin1 and PKMzeta sequentially control dendritic protein synthesis, Sci. Signal., 3, ra18.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Smet-Nocca, C., Launay, H., Wieruszeski, J. M., Lippens, G., and Landrieu, I. (2013) Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA, J. Biomol. NMR, 55, 323–337.

    Article  CAS  PubMed  Google Scholar 

  57. Smith, L., Wang, Z., and Smith, J. B. (2003) Caspase processing activates atypical protein kinase C zeta by relieving autoinhibition and destabilizes the protein, Biochem. J., 375, 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jalil, S. J., Sacktor, T. C., and Shouval, H. Z. (2015) Atypical PKCs in memory maintenance: the roles of feedback and redundancy, Learn. Mem., 22, 344–353.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sacktor, T. C. (2010) PINing for things past, Sci. Signal., 3, pe9.

    Article  PubMed  Google Scholar 

  60. Penney, J., and Tsai, L. H. (2014) Histone deacetylases in memory and cognition, Sci. Signal., 7, re12.

    Article  PubMed  Google Scholar 

  61. Lattal, K. M., Barrett, R. M., and Wood, M. A. (2007) Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction, Behav. Neurosci., 121, 1125–1131.

    Article  CAS  PubMed  Google Scholar 

  62. Bahari-Javan, S., Maddalena, A., Kerimoglu, C., Wittnam, J., Held, T., Bahr, M., Burkhardt, S., Delalle, I., Kugler, S., Fischer, A., and Sananbenesi, F. (2012) HDAC1 regulates fear extinction in mice, J. Neurosci., 32, 5062–5073.

    Article  CAS  PubMed  Google Scholar 

  63. Franklin, A. V., Rusche, J. R., and McMahon, L. L. (2014) Increased long-term potentiation at medial-perforant path-dentate granule cell synapses induced by selective inhibition of histone deacetylase 3 requires Fragile X mental retardation protein, Neurobiol. Learn. Mem., 114, 193–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., and Sweatt, J. D. (2004) Regulation of histone acetylation during memory formation in the hippocampus, J. Biol. Chem., 279, 40545–40559.

    Article  CAS  PubMed  Google Scholar 

  65. Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., Cabrera, S. M., McDonough, C. B., Brindle, P. K., Abel, T., and Wood, M. A. (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation, J. Neurosci., 27, 6128–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Korzus, E., Rosenfeld, M. G., and Mayford, M. (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation, Neuron, 42, 961–972.

    Article  CAS  PubMed  Google Scholar 

  67. Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., and Wood, M. A. (2009) Modulation of long-term memory for object recognition via HDAC inhibition, Proc. Natl. Acad. Sci. USA, 106, 9447–9452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hawk, J. D., Florian, C., and Abel, T. (2011) Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory, Learn. Mem., 18, 367–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Federman, N., Fustinana, M. S., and Romano, A. (2009) Histone acetylation is recruited in consolidation as a molecular feature of stronger memories, Learn. Mem., 16, 600–606.

    Article  PubMed  Google Scholar 

  70. Kim, J., Kwon, J. T., Kim, H. S., Josselyn, S. A., and Han, J. H. (2014) Memory recall and modifications by activating neurons with elevated CREB, Nat. Neurosci., 17, 65–72.

    Article  CAS  PubMed  Google Scholar 

  71. Miller, C. A., and Sweatt, J. D. (2007) Covalent modification of DNA regulates memory formation, Neuron, 53, 857–869.

    Article  CAS  PubMed  Google Scholar 

  72. Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., Rivera, I. M., Rubio, M. D., Rumbaugh, G., and Sweatt, J. D. (2010) Cortical DNA methylation maintains remote memory, Nat. Neurosci., 13, 664–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Borodinova.

Additional information

Original Russian Text © A. A. Borodinova, A. B. Zuzina, P. M. Balaban, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 372-388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodinova, A.A., Zuzina, A.B. & Balaban, P.M. Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity. Biochemistry Moscow 82, 243–256 (2017). https://doi.org/10.1134/S0006297917030026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030026

Keywords

Navigation