Skip to main content
Log in

Molecular dynamics investigation of a mechanism of allosteric signal transmission in ribosomes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The ribosome is a molecular machine that synthesizes all cellular proteins via translation of genetic information encoded in polynucleotide chain of messenger RNA. Transition between different stages of the ribosome working cycle is strictly coordinated by changes in structure and mutual position both of subunits of the ribosome and its ligands. Therein, information regarding structural transformations is transmitted between functional centers of the ribosome through specific signals. Usually, functional centers of ribosomes are located at a distance reaching up to several tens of angstroms, and it is believed that such signals are transduced allosterically. In our study, we attempted to answer the question of how allosteric signal can be transmitted from one of the so-called sensory elements of ribosomal tunnel (RT) to the peptidyl transferase center (PTC). A segment of RT wall from the E. coli ribosome composed of nucleotide residues A2058, A2059, m2A2503, G2061, A2062, and C2063 of its 23S rRNA was examined by molecular dynamics simulations. It was found that a potential signal transduction pathway A2058-C2063 acted as a dynamic ensemble of interdependent conformational states, wherein cascade-like changes can occur. It was assumed that structural rearrangement in the A2058-C2063 RT segment results in reversible inactivation of PTC due to a strong stacking contact between functionally important U2585 residue of the PTC and nucleotide residue C2063. A potential role for the observed conformational transition in the A2058-C2063 segment for regulating ribosome activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polacek, N., Patzke, S., Nierhaus, K. H., and Barta, A. (2000) Periodic conformational changes in rRNA: moni-toring the dynamics of translating ribosomes, Mol. Cell, 6, 159–171.

    CAS  PubMed  Google Scholar 

  2. Zhou, J., Lancaster, L., Donohue, J. P., and Noller, H. F. (2013) Crystal structures of EF-G–ribosome complexes trapped in intermediate states of translocation, Science, 340, 1236086.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pulk, A., and Cate, J. H. D. (2013) Control of ribosomal subunit rotation by elongation factor G, Science, 340, 1235970.

  4. Ogle, J. M., Brodersen, D. E., Clemons, W. M., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit, Science, 292, 897–902.

    Article  CAS  PubMed  Google Scholar 

  5. Munro, J. B., Sanbonmatsu, K. Y., Spahn, C. M., and Blanchard, S. C. (2009) Navigating the ribosome’s metastable energy landscape, Trends Biochem. Sci., 34, 390–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Steitz, T. A. (2008) A structural understanding of the dynamic ribosome machine, Nat. Rev. Mol. Cell Biol., 9, 242–253.

    Article  CAS  PubMed  Google Scholar 

  7. Rheinberger, H.-J., and Nierhaus, K. H. (1986) Allosteric interactions between the ribosomal transfer RNA-binding sites A and E, J. Biol. Chem., 261, 9133–9139.

    CAS  PubMed  Google Scholar 

  8. Bogdanov, A. A., Dontsova, O. A., Dokudovskaya, S. S., and Lavrik, I. N. (1995) Structure and function of 5S rRNA in the ribosome, Biochem. Cell Biol., 73, 869–876.

    Article  CAS  PubMed  Google Scholar 

  9. Chan, Y.-L., Dresios, J., and Wool, I. G. (2006) A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions, J. Mol. Biol., 355, 1014–1025.

    Article  CAS  PubMed  Google Scholar 

  10. Blaha, G., Gurel, G., Schroeder, S. J., Moore, P. B., and Steitz, T. A. (2008) Mutations outside the anisomycin-binding site can make ribosomes drug-resistant, J. Mol. Biol., 379, 505–519.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Davidovich, C., Bashan, A., Auerbach-Nevo, T., Yaggie, R. D., Gontarek, R., and Yonath, A. (2007) Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity, Proc. Natl. Acad. Sci. USA, 104, 4291–4296.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang, L., Pulk, A., Wasserman, M. R., Feldman, M. B., Altman, R. B., Cate J. H., and Blanchard, S. C. (2012) Allosteric control of the ribosome by small-molecule antibiotics, Nat. Struct. Mol. Biol., 19, 957–963.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sothiselvam, S., Liu, B., Han, W., Ramu, H., Klepacki, D., Atkinson, G. C., Brauer, A., Remm, M., Tenson, T., Schulten, K., Vazquez-Laslop, N., and Mankin, A. S. (2014) Macrolide antibiotics allosterically predispose the ribosome for translation arrest, Proc. Natl. Acad. Sci. USA, 111, 9804–9809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sergiev, P. V., Bogdanov, A. A., Dahlberg, A. E., and Dontsova, O. (2000) Mutations at position A960 of E. coli 23S ribosomal RNA influence the structure of 5S ribosomal RNA and the peptidyltransferase region of 23S ribosomal RNA, J. Mol. Biol., 299, 379–389.

    Article  CAS  PubMed  Google Scholar 

  15. Sergiev, P. V., Lesnyak, D. V., Burakovsky, D. E., Kiparisov, S. V., Leonov, A. A., Bogdanov, A. A., Brimacombe, R., and Dontsova, O. A. (2005) Alteration in location of a conserved GTPase-associated center of the ribosome induced by mutagenesis influences the structure of peptidyltrans-ferase center and activity of elongation factor G, J. Biol. Chem., 280, 31882–31889.

    Article  CAS  PubMed  Google Scholar 

  16. Sergiev, P. V., Kiparisov, S. V., Burakovsky, D. E., Lesnyak, D. V., Leonov, A. A., Bogdanov, A. A., and Dontsova, O. A. (2005) The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway? J. Mol. Biol., 353, 116–123.

    Article  CAS  PubMed  Google Scholar 

  17. Burakovsky, D. E., Sergiev, P. V., Steblyanko, M. A., Konevega, A. L., Bogdanov, A. A., and Dontsova, O. A. (2011) The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome, FEBS Lett., 585, 3073–3078.

    Article  CAS  PubMed  Google Scholar 

  18. Monod, J., Wyman, J., and Changeux, J.-P. (1965) On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88–118.

    Article  CAS  PubMed  Google Scholar 

  19. Goodey, N. M., and Benkovic, S. J. (2008) Allosteric regulation and catalysis emerge via a common route, Nat. Chem. Biol., 4, 474–482.

    Article  CAS  PubMed  Google Scholar 

  20. Sethi, A., Eargle, J., Black, A. A., and Luthey-Schulten, Z. (2009) Dynamical networks in tRNA:protein complexes, Proc. Natl. Acad. Sci. USA, 106, 6620–6625.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Williams, S. G., and Hall, K. B. (2014) Linkage and allostery in snRNP protein/RNA complexes, Biochemistry, 53, 3529–3539.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wilson, D. N. (2009) The A-Z of bacterial translation inhibitors, Crit. Rev. Biochem. Mol. Biol., 44, 393–433.

    Article  CAS  PubMed  Google Scholar 

  23. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905–920.

    Article  CAS  PubMed  Google Scholar 

  24. Ito, K., and Chiba, S. (2013) Arrest peptides: cis-acting modulators of translation, Annu. Rev. Biochem., 82, 171–202.

    Article  CAS  PubMed  Google Scholar 

  25. Vazquez-Laslop, N., Ramu, H., and Mankin, A. S. (2011) Nascent peptide mediated ribosome stalling promoted by antibiotics, in Ribosomes Structure, Function and Dynamics (Rodnina, M. V., Wintermeyer, W., and Green, R., eds.) Springer, Vienna, pp. 377–392.

    Google Scholar 

  26. Seidelt, B., Innis, C. A., Wilson, D. N., Gartmann, M., Armache, J.-P., Villa, E., Trabuco, L. G., Becker, T., Mielke, T., Schulten, K., Steitz, T. A., and Beckmann, R. (2009) Structural insight into nascent polypeptide chainmediated translational stalling, Science, 326, 1412–1415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Arenz, S., Ramu, H., Gupta, P., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., Mankin, A. S., and Wilson, D. N. (2014) Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide, Nat. Commun., 5, 3501.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kannan, K., and Mankin, A. S. (2011) Macrolide antibiotics in the ribosomal tunnel: species-specific binding and action, Ann. N.Y. Acad. Sci., 1241, 33–47.

    Article  CAS  PubMed  Google Scholar 

  29. Weisblum, B. (1995) Erythromycin resistance by ribosome modification, Antimicrob. Agents Chemother., 39, 577–585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sanbonmatsu, K. Y. (2012) Computational studies of molecular machines: the ribosome, Curr. Opin. Struct. Biol., 22, 168–174.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Trabuco, L. G., Harrison, C. B., Schreiner, E., and Schulten, K. (2010) Recognition of the regulatory nascent chain TnaC by the ribosome, Structure, 18, 627–637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gumbart, J., Schreiner, E., Wilson, D., Beckmann, R., and Schulten, K. (2012) Mechanism of SecM-mediated stalling in the ribosome, Biophys. J., 103, 331–341.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shishkina, A., Makarov, G., Tereshchenkov, A., Korshunova, G., Sumbatyan, N., Golovin, A., Svetlov, M., and Bogdanov, A. (2013) Conjugates of amino acids and peptides with 5-O-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel, Bioconj. Chem., 24, 1861–1869.

    Article  CAS  Google Scholar 

  34. Jack, A., Dunkle, J. A., Xiong, L., Mankin A. S., and Cate, J. H. (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action, Proc. Natl. Acad. Sci. USA, 107, 17152–17157.

    Google Scholar 

  35. Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Muller, K. M., Pande, N., Shang, Z., Yu, N., and Gutell, R. R. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs, BMC Bioinformatics, 3, 2.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Byrd, R. H., Lu, P., and Nocedal, J. (1995) A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190–1208.

    Article  Google Scholar 

  37. Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling through velocity rescaling, J. Chem. Phys., 126, 014101.

    Article  PubMed  Google Scholar 

  38. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. C. (2005) GROMACS: fast, flexible, free, J. Comput. Chem., 26, 1701–1718.

    Article  Google Scholar 

  39. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 435–447.

    Article  CAS  Google Scholar 

  40. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Di Nola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684–3690.

    Article  CAS  Google Scholar 

  41. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089–10092.

    Article  CAS  Google Scholar 

  42. Jorgensen, W. L., Chandrasekhar, J., and Madura, J. D. (1983) Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926–935.

    Article  CAS  Google Scholar 

  43. Reshetnikov, R. V., Sponer, J., Rassokhina, O. I., Kopylov, A. M., Tsvetkov, P. O., Makarov, A. A., and Golovin, A. V. (2011) Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process, Nucleic Acids Res., 39, 9789–9802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Athavale, S. S., Petrov, A. S., Hsiao, C., Watkins, D., Prickett, C. D., Gossett, J. J., Lie, L., Bowman, J. C., O’ Neill, E., Bernier, C. R., Hud, N. V., Wartell, R. M., Harvey, S. C., and Williams, L. D. (2012) RNA folding and catalysis mediated by iron(II), PloS One, 7, e38024.

  45. Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., and Parrinello, M. (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics, Comput. Phys. Commun., 180, 1961–1972.

    Article  CAS  Google Scholar 

  46. Arenz, S., Meydan, S., Starosta, A. L., Berninghausen, O., Beckmann, R., Vazquez-Laslop, N., and Wilson, D. N. (2014) Drug sensing by the ribosome induces translational arrest via active site perturbation, Mol. Cell, 56, 446–452.

    Article  CAS  PubMed  Google Scholar 

  47. Hashem, Y., and Auffinger, P. (2009) A short guide for molecular dynamic simulation of RNA systems, Methods, 47, 187–197.

    Article  CAS  PubMed  Google Scholar 

  48. Laio, A., and Parrinello, M. (2002) Escaping free energy minima, Proc. Natl. Acad. Sci. USA, 99, 12562–12566.

    Article  Google Scholar 

  49. Hansen, J., Ippolito, J., Ban, N., Nissen, P., Moore, P., and Steitz, T. (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit, Mol. Cell, 10, 117–128.

    Article  CAS  PubMed  Google Scholar 

  50. Hansen, J. L., Moore, P. B., and Steitz, T. A. (2003) Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330, 1061–1075.

    Article  CAS  PubMed  Google Scholar 

  51. Vazquez-Laslop, N., Ramu, H., Klepacki, D., Kannan, K., and Mankin, A. S. (2010) The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide, EMBO J., 29, 3108–3117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Leontis, N. B., Stombaugh, J., and Westhof, E. (2000) The non-Watson–Crick base pairs and their associated isostericity matrices, Nucleic Acids Res., 30, 3497–3531.

    Article  Google Scholar 

  53. Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002) Structural insights into peptide bond formation, Proc. Natl. Acad. Sci. USA, 99, 11670–11765.

    Google Scholar 

  54. Vazquez-Laslop, N., Thum, C., and Mankin, A. S. (2008) Molecular mechanism of drug-dependent ribosome stalling, Mol. Cell, 30, 190–202.

    Article  CAS  PubMed  Google Scholar 

  55. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B., and Green, R. (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release, Cell, 117, 589–599.

    Article  CAS  PubMed  Google Scholar 

  56. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920–930.

    Article  CAS  PubMed  Google Scholar 

  57. Polikanov, Y. S., Steitz, T. A., and Innis, C. A. (2014) A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome, Nat. Struct. Mol. Biol., 21, 787–793.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Sergiev, P. V., Lesnyak, D. V., Burakovsky, D. E., Svetlov, M., Kolb, V. A., Serebryakova, M. V., Demina, I. A., Govorun, V. M., Dontsova, O. A., and Bogdanov, A. A. (2012) Non-stressful death of 23S rRNA mutant G2061C defective in puromycin reaction, J. Mol. Biol., 416, 656–667.

    Article  CAS  PubMed  Google Scholar 

  59. Chirkova, A., Erlacher, M. D., Clementi, N., Zywicki, M., Aigner, M., and Polacek, N. (2010) The role of the universally conserved A2450–C2063 base pair in the ribosomal peptidyl transferase center, Nucleic Acids Res., 38, 4844–4855.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Leung, E. K., Suslov, N., Tuttle, N., Sengupta, R., and Piccirilli, J. A. (2011) The mechanism of peptidyl transfer catalysis by the ribosome, Annu. Rev. Biochem., 80, 527–555.

    Article  CAS  PubMed  Google Scholar 

  61. Schmeing, T. M., Huang, K. S., Strobel, S. A., and Steitz, T. A. (2005) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA, Nature, 438, 520–524.

    Article  CAS  PubMed  Google Scholar 

  62. Bhushan, S., Hoffmann, T., Seidelt, B., Frauenfeld, J., Mielke, T., Berninghausen, O., Wilson, D. N., and Beckmann, R. (2011) SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center, PLoS Biol., 18, e1000581.

    Article  Google Scholar 

  63. Tsai, A., Kornberg, G., Johansson, M., Chen, J., and Puglisi, J. D. (2014) The dynamics of SecM-induced translational stalling, Cell Rep., 7, 1521–1533.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Sothiselvam, S., Liu, B., Han, W., Ramu, H., Klepacki, D., Atkinson, G. C., Brauer, A., Remm, M., Tenson, T., Schulten, K., Vazquez-Laslop, N., and Mankin, A. S. (2014) Macrolide antibiotics allosterically predispose the ribosome for translation arrest, Proc. Natl. Acad. Sci. USA, 111, 9804–9809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bischoff, L., Berninghausen, O., and Beckmann, R. (2014) Molecular basis for the ribosome functioning as an L-tryptophan sensor, Cell Rep., 9, 469–475.

    Article  CAS  PubMed  Google Scholar 

  66. Kannan, K., Kanabar, P., Schryerm, D., Florin, T., Oh, E., Bahroos, N., Tenson, T., Weissman, J. S., and Mankin, A. S. (2014) The general mode of translation inhibition by macrolide antibiotics, Proc. Natl. Acad. Sci. USA, 111, 15958–15963.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bogdanov.

Additional information

Original Russian Text © G. I. Makarov, A. V. Golovin, N. V. Sumbatyan, A. A. Bogdanov, 2015, published in Biokhimiya, 2015, Vol. 80, No. 8, pp. 1250–1261.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-063, July 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.I., Golovin, A.V., Sumbatyan, N.V. et al. Molecular dynamics investigation of a mechanism of allosteric signal transmission in ribosomes. Biochemistry Moscow 80, 1047–1056 (2015). https://doi.org/10.1134/S0006297915080106

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915080106

Key words

Navigation