Skip to main content
Log in

Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia)

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Seasonal changes in the isoform composition of thick and thin filament proteins (titin, myosin heavy chains (MyHCs), nebulin), as well as in the phosphorylation level of titin in striated muscles of brown bear (Ursus arctos) and hibernating Himalayan black bear (Ursus thibetanus ussuricus) were studied. We found that the changes that lead to skeletal muscle atrophy in bears during hibernation are not accompanied by a decrease in the content of nebulin and intact titin-1 (T1) isoforms. However, a decrease (2.1–3.4-fold) in the content of T2 fragments of titin was observed in bear skeletal muscles (m. gastrocnemius, m. longissimus dorsi, m. biceps) during hibernation. The content of the stiffer N2B titin isoform was observed to increase relative to the content of its more compliant N2BA isoform in the left ventricles of hibernating bears. At the same time, in spite of the absence of decrease in the total content of T1 in the myocardium of hibernating brown bear, the content of T2 fragments decreased ∼1.6-fold. The level of titin phosphorylation only slightly increased in the cardiac muscle of hibernating brown bear. In the skeletal muscles of brown bear, the level of titin phosphorylation did not vary between seasons. However, changes in the composition of MyHCs aimed at increasing the content of slow (I) and decreasing the content of fast (IIa) isoforms of this protein during hibernation of brown bear were detected. Content of MyHCs I and IIa in the skeletal muscles of hibernating Himalayan black bear corresponded to that in the skeletal muscles of hibernating brown bear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATPase:

adenosine triphosphatase

HR:

heart rate

LV:

left ventricle of heart

MyHCs:

myosin heavy chains

T2:

proteolytic fragment of intact titin-1 (T1)

References

  1. Carey, H. V., Andrews, M. T., and Martin, S. L. (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature, Physiol. Rev., 83, 1153–1181.

    Article  CAS  PubMed  Google Scholar 

  2. Barnes, B. M. (1989) Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator, Science, 244, 1593–1595.

    Article  CAS  PubMed  Google Scholar 

  3. Zakharova, N. M. (2014) Some peculiarities of warming-up of the hibernating ground squirrel Spermophilus undulatus during induced awakening, Fundament. Issledovaniya, 6, 1401–1405.

    Google Scholar 

  4. Toien, O., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C., and Barnes, B. M. (2011) Hibernation in black bears: independence of metabolic suppression from body temperature, Science, 331, 906–909.

    Article  CAS  PubMed  Google Scholar 

  5. Nelson, R. A., Wahner, H. W., Jones, J. D., Ellefson, R. D., and Zollman, P. E. (1973) Metabolism of bears before, during, and after winter sleep, Am. J. Physiol., 224, 491–496.

    CAS  PubMed  Google Scholar 

  6. Tinker, D. B., Harlow, H. J., and Beck, T. D. (1998) Protein use and muscle-fiber changes in free-ranging, hibernating black bears, Physiol. Zool., 71, 414–424.

    Article  CAS  PubMed  Google Scholar 

  7. Harlow, H. J., Lohuis, T., Beck, T. D., and Iaizzo, P. A. (2001) Muscle strength in overwintering bears, Nature, 409, 997.

    Article  CAS  PubMed  Google Scholar 

  8. Lohuis, T. D., Harlow, H. J., Beck, T. D., and Iaizzo, P. A. (2007) Hibernating bears conserve muscle strength and maintain fatigue resistance, Physiol. Biochem. Zool., 80, 257–269.

    Article  CAS  PubMed  Google Scholar 

  9. Hershey, J. D., Robbins, C. T., Nelson, O. L., and Lin, D. C. (2008) Minimal seasonal alterations in the skeletal muscle of captive brown bears, Physiol. Biochem. Zool., 81, 138–147.

    Article  CAS  PubMed  Google Scholar 

  10. Nelson, O. L., Robbins, C. T., Wu, Y., and Granzier, H. (2008) Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears, Am. J. Physiol. Heart Circ. Physiol., 295, 366–371.

    Article  Google Scholar 

  11. Barrows, N. D., Nelson, O. L., Robbins, C. T., and Rourke, B. C (2011) Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears, Physiol. Biochem. Zool., 84, 1–17.

    Article  CAS  PubMed  Google Scholar 

  12. Tatsumi, R., and Hattori, A. (1995) Detection of giant myofibrillar proteins connectin and nebulin by electrophoresis in 2% polyacrylamide slab gels strengthened with agarose, Anal. Biochem., 224, 28–31.

    Article  CAS  PubMed  Google Scholar 

  13. Vikhlyantsev, I. M., Podlubnaya, Z. A., and Kozlovskaya, I. B. (2004) New titin isoforms in skeletal muscles of mammals, Dokl. Biochem. Biophys., 395, 111–113.

    Article  CAS  PubMed  Google Scholar 

  14. Vikhlyantsev, I. M., and Podlubnaya, Z. A. (2006) On the problem of titin isoforms, Biofizika, 51, 951–958.

    CAS  Google Scholar 

  15. Tikunov, B. A., Sweeney, H. L., and Rome, L. C. (2001) Quantitative electrophoretic analysis of myosin heavy chains in single muscle fibers, J. Appl. Physiol., 90, 1927–1935.

    CAS  PubMed  Google Scholar 

  16. Borbely, A., Falcao-Pires, I., van Heerebeek, L., Hamdani, N., Edes, I., Gavina, C., Leite-Moreira, A. F., Bronzwaer, J. G., Papp, Z., van der Velden, J., Stienen, G. J., and Paulus, W. J. (2009) Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium, Circ. Res., 104, 780–786.

    Article  CAS  PubMed  Google Scholar 

  17. Soteriou, A., Gamage, M., and Trinick, J. (1993) A survey of interactions made by the giant protein titin, J. Cell Sci., 14, 119–123.

    Google Scholar 

  18. Vikhlyantsev, I. M., Okuneva, A. D., Shpagina, M. D., Shumilina, Yu. V., Molochkov, N. V., Salmov, N. N., and Podlubnaya, Z. A. (2011) Changes in isoform composition, structure and functional properties of titin from the myocardium of Mongolian gerbil (Meriones unguiculatus) after exposure to real microgravity, Biochemistry (Moscow), 76, 1312–1320.

    Article  CAS  Google Scholar 

  19. Meyer, L. C., and Wright, N. T. (2013) Structure of giant muscle proteins, Front. Physiol., 4, 1–12.

    Article  Google Scholar 

  20. Vikhlyantsev, I. M., and Podlubnaya, Z. A. (2012) New titin (connectin) isoforms and their functional role in striated muscles of mammals: facts and suppositions, Biochemistry (Moscow), 77, 1515–1535.

    Article  CAS  Google Scholar 

  21. Liversage, A. D., Holmes, D., Knight, P. J., Tskhovrebova, L., and Trinick, J. (2001) Titin and the sarcomere symmetry paradox, J. Mol. Biol., 305, 401–419.

    Article  CAS  PubMed  Google Scholar 

  22. Horowits, R., Kempner, E. S., Bisher, M. E., and Podolsky, R. J. (1986) A physiological role for titin and nebulin in skeletal muscle, Nature, 323, 160–164.

    Article  CAS  PubMed  Google Scholar 

  23. Linke, W. A., and Hamdani, N. (2014) Gigantic business: titin properties and function through thick and thin, Circ. Res., 114, 1052–1068.

    Article  CAS  PubMed  Google Scholar 

  24. Ottenheijm, C. A., Granzier, H., and Labeit, S. (2012) The sarcomeric protein nebulin: another multifunctional giant in charge of muscle strength optimization, Front. Physiol., 3, 37.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Vikhlyantsev, I. M., Malyshev, S. L., Shenkman, B. S., and Podlubnaya, Z. A. (2004) The behavior of titin and proteins of its family from skeletal muscles of ground squirrel (Citellus undulatus) during hibernation and rats under conditions of simulated microgravity, Biofizika, 49, 995–1002.

    CAS  Google Scholar 

  26. Vikhlyantsev, I. M., Karaduleva, E. V., and Podlubnaya, Z. A. (2008) Seasonal changes in titin isoform composition in the muscles of hibernating ground squirrels, Biofizika, 53, 1066–1072.

    CAS  Google Scholar 

  27. Toursel, T., Stevens, L., Granzier, H., and Mounier, Y. (2002) Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions, J. Appl. Physiol. (1985), 92, 1465–1472.

    Article  Google Scholar 

  28. Shenkman, B. S., Nemirovskaya, T. L., Belozerova, I. N., Vikhlyantsev, I. M., Matveeva, O. A., Staroverova, K. S., and Podlubnaya, Z. A. (2002) Effects of Ca2+-binding agent on unloaded rat soleus: muscle morphology and sarcomeric titin content, J. Gravit. Physiol., 9, 139–140.

    Google Scholar 

  29. Shenkman, B. S., Podlubnaya, Z. A., Vikhlyantsev, I. M., Litvinova, K. S., Udaltsov, S. N., Nemirovskaya, T. L., Lemesheva, Yu. S., Mukhina, A. M., and Kozlovskaya, I. B. (2004) Contractile characteristics and proteins of the sarcomeric cytoskeleton of human m. soleus fibers under gravitational unloading. The role of reference stimulus, Biofizika, 49, 881–890.

    CAS  PubMed  Google Scholar 

  30. Udaka, J., Ohmori, S., Terui, T., Ohtsuki, I., Ishiwata, S., Kurihara, S., and Fukuda, N. (2008) Disuse-induced preferential loss of the giant protein titin depresses muscle performance via abnormal sarcomeric organization, J. Gen. Physiol., 131, 33–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kruger, M., Wright, J., and Wang, K. (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile, J. Cell Biol., 115, 97–107.

    Article  CAS  PubMed  Google Scholar 

  32. Fedorov, V. B., Goropashnaya, A. V., Toien, O., Stewart, N. C., Gracey, A. Y., Chang, C., Qin, S., Pertea, G., Quackenbush, J., Showe, L. C., Showe, M. K., Boyer, B. B., and Barnes, B. M. (2009) Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus), Physiol. Genom., 37, 108–118.

    Article  CAS  Google Scholar 

  33. Ulanova, A., Gritsyna, Y., Vikhlyantsev, I., Salmov, N., Bobylev, A., Abdusalamova, Z., Rogachevsky, V., Shenkman, B., and Podlubnaya, Z. (2015) Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight, Biomed. Res. Int., 2015, 104735; DOI: 10.1155/2015/104735; Epub 2015 Jan 18.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Yang, C. X., He, Y., Gao, Y. F., Wang, H. P., and Goswami, N. (2014) Changes in calpains and calpastatin in the soleus muscle of Daurian ground squirrels during hibernation, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 176, 26–31.

    Article  CAS  PubMed  Google Scholar 

  35. Fedorov, V. B., Goropashnaya, A. V., Toien, O., Stewart, N. C., Chang, C., Wang, H., Yan, J., Showe, L. C., Showe, M. K., and Barnes, B. M. (2011) Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus), BMC Genomics, 12, 171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Somerville, L. L., and Wang, K. (1988) Sarcomere matrix of striated muscle: in vivo phosphorylation of titin and nebulin in mouse diaphragm muscle, Arch. Biochem. Biophys., 262, 118–129.

    Article  CAS  PubMed  Google Scholar 

  37. Gregorio, C. C., Granzier, H., Sorimachi, H., and Labeit, S. (1999) Muscle assembly: a titanic achievement, Curr. Opin. Cell Biol., 11, 18–25.

    Article  CAS  PubMed  Google Scholar 

  38. Kruger, M., and Linke, W. A. (2006) Protein kinase A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension, J. Muscle Res. Cell Motil., 27, 435–444.

    Article  PubMed  Google Scholar 

  39. Vikhlyantsev, I. M., and Podlubnaya, Z. A. (2003) Phosphorylation of sarcomeric cytoskeletal proteins — the adaptive factor of inhibition of contractile activity of muscles during hibernation, Biofizika, 48, 499–504.

    CAS  Google Scholar 

  40. Bottinelli, R., Canepari, M., Reggiani, C., and Stienen, G. J. (1994) Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibers, J. Physiol., 481, 663–675.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sieck, G. C., Zhan, W. Z., Prakash, Y. S., Daood, M. J., and Watchko, J. F. (1995) SDH and actomyosin ATPase activities of different fiber types in rat diaphragm muscle, J. Appl. Physiol. (1985), 79, 1629–1639.

    CAS  Google Scholar 

  42. Ohira, Y., Yoshinaga, T., Ohara, M., Nonaka, I., Yoshioka, T., Yamashita-Goto, K., Shenkman, B. S., Kozlovskaya, I. B., Roy, R. R., and Edgerton, V. R. (1999) Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading, J. Appl. Physiol. (1985), 87, 1776–1785.

    CAS  Google Scholar 

  43. Baldwin, K. M., Haddad, F., Pandorf, C. E., Roy, R. R., and Edgerton, V. R. (2013) Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms, Front. Physiol., 4, 284.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Gritsyna, Yu. V., Salmov, N. N., Vikhlyantsev, I. M., Ulanova, A. D., Sharapov, M. G., Teplova, V. V., and Podlubnaya, Z. A. (2013) Changes in gene expression and titin (connectin) content in striated muscles of chronically alcoholized rats, Mol. Biol. (Moscow), 47, 996–1003.

    Article  Google Scholar 

  45. Lazareva, M. V., Trapeznikova, K. O., Vikhlyantsev, I. M., Bobylev, A. G., Klimov, A. A., and Podlubnaya, Z. A. (2012) Seasonal changes in isoform composition of myosin heavy chains of skeletal muscles of the hibernating ground squirrel Spermophilus undulatus, Biofizika, 57, 982–987.

    CAS  PubMed  Google Scholar 

  46. Rourke, B. C., Cotton, C. J., Harlow, H. J., and Caiozzo, V. J. (2006) Maintenance of slow type I myosin protein and mRNA expression in overwintering prairie dogs (Cynomys leucurus and ludovicianus) and black bears (Ursus americanus), J. Comp. Physiol. B, 176, 709–720.

    Article  CAS  PubMed  Google Scholar 

  47. Morano, I., Adler, K., Agostini, B., and Hasselbach, W. (1992) Expression of myosin heavy and light chains and phosphorylation of the phosphorylatable myosin light chain in the heart ventricle of the European hamster during hibernation and in summer, J. Muscle Res. Cell Motil., 13, 64–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Vikhlyantsev.

Additional information

Original Russian Text © N. N. Salmov, I. M. Vikhlyantsev, A. D. Ulanova, Yu. V. Gritsyna, A. G. Bobylev, A. P. Saveljev, V. V. Makariushchenko, G. Yu. Maksudov, Z. A. Podlubnaya, 2015, published in Biokhimiya, 2015, Vol. 80, No. 3, pp. 412–426.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmov, N.N., Vikhlyantsev, I.M., Ulanova, A.D. et al. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia). Biochemistry Moscow 80, 343–355 (2015). https://doi.org/10.1134/S0006297915030098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915030098

Key words

Navigation