Skip to main content
Log in

Stratification of chondroitin sulfate binding sites in 3D-model of bovine testicular hyaluronidase and effective size of glycosaminoglycan coat of the modified protein

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A 3D-model of bovine testicular hyaluronidase (BTH) was constructed based on established tertiary structure of human hyaluronidase Hyal1 using a molecular homological modeling method in silico. The analysis of the BTH 3D-model demonstrated lysine residue stratification during enzyme modification. The 3D-model of chondroitin sulfate (CHS)-modified hyaluronidase (BTH-CHS) was obtained by modeling covalent binding of lysine residues with benzoquinone-activated CHS. The degree of enzyme modification and the length of CHS chains were varied during 3D modeling. The importance of deep BTH modification degree for the formation of active and stable enzyme derivatives was shown, as determined earlier experimentally. The effective size of the CHS coat for productive BTH modification was confirmed. It is theoretically achieved at the increase in molecular mass of BTH-CHS derivative to approximately 140–180 kDa and can be practically obtained, according to experimental data, using CHS of different molecular mass (30–50 as well as 120–140 kDa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BTH:

bovine testicular hyaluronidase

CHS:

chondroitin sulfate

3D:

spatial/three-dimensional/tertiary protein structure

EGF:

epidermal growth factor

GCU:

glucuronic acid

Hyal1:

human hyaluronidase

NAG:

N-acetylglucosamine

RMS:

root mean square deviation of model Cα-atoms from prototype Cα-atoms

TNBS:

trinitrobenzenesulfonic acid

References

  1. Maksimenko, A. V. (2012) Cardiological biopharmaceutics in concept of targeted drug transport: practical results and research perspectives, Acta Naturae, 4, 76–86.

    Google Scholar 

  2. Batool, S., Ferdous, S., Kamal, M. A., Iftikhar, H., and Rashid, S. (2013) In silico screening for identification of novel Aurora kinase inhibitors by molecular docking, dynamics simulations and ligand-based hypothesis approaches, Enz. Eng., 2, 1.

    Google Scholar 

  3. Wu, Z. L. (2012) Time for molecular glycobiology, J. Glycobiol., 1, e106.

    Google Scholar 

  4. Maksimenko, A. V., and Turashev, A. D. (2012) No-reflow phenomenon and endothelial glycocalyx of microcirculation, Biochem. Res. Int., 2012, 859231; DOI: 10.1155/2012/859231.

    Google Scholar 

  5. Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A., and oude Egbrink, M. G. A. (2007) The endothelial glycocalyx: compositions, functions, and visualization, Pflugers Arch., 454, 345–359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rubio-Gayosso, I., Platts, S. H., and Duling, B. R. (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 290, 2247–2256.

    Article  Google Scholar 

  7. Stern, R., and Jedrzejas, M. J. (2006) Hyaluronidases: their genomics, structure, and mechanism of action, Chem. Rev., 106, 818–839.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vink, H., and Duling, B. R. (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume, Am. J. Physiol. Heart Circ. Physiol., 278, 285–289.

    Google Scholar 

  9. Platts, S. H., and Duling, B. R. (2004) Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx, Circ. Res., 94, 77–82.

    Article  CAS  PubMed  Google Scholar 

  10. Stern, R. (2008) Hyaluronidases in cancer biology, Sem. Cancer Biol., 18, 275–280.

    Article  CAS  Google Scholar 

  11. Toole, B. P., Wight, T. N., and Tammi, M. I. (2002) Hyaluronan-cell interactions in cancer and vascular disease, J. Biol. Chem., 277, 4593–4596.

    Article  CAS  PubMed  Google Scholar 

  12. Stern, R., and Jedrzejas, M. J. (2008) Carbohydrate polymer at the center of life’s origins: the importance of molecular processivity, Chem. Rev., 108, 5061–5085.

    Article  CAS  PubMed  Google Scholar 

  13. Erickson, M., and Stern, R. (2012) Chain gangs: new aspects of hyaluronan metabolism, Biochem. Res. Int., 2012, 893947; DOI: 10.1155/2012/893947.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Markovich-Housley, Z., Miglierini, G., Soldatova, L., Rizkallah, P. J., Muller, U., and Schirmer, T. (2000) Crystal structure of hyaluronidase, a major allergen of bee venom, Structure, 8, 1025–1035.

    Article  Google Scholar 

  15. Chao, K. L., Muthukumar, L., and Herzberg, O. (2007) Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis, Biochemistry, 46, 6911–6920.

    Article  CAS  PubMed  Google Scholar 

  16. Maksimenko, A. V., Schechilina, U. V., and Tischenko, E. G. (2001) Dextran modified hyaluronidase is resistant to heparin inhibition, Biochemistry (Moscow), 66, 456–463.

    Article  CAS  Google Scholar 

  17. Maksimenko, A. V., Schechilina, U. V., and Tischenko, E. G. (2003) Glycosaminoglycan microsurrounding of hyaluronidase in regulation of its endoglycosidase activity, Biochemistry (Moscow), 68, 862–868.

    Article  CAS  Google Scholar 

  18. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) Swiss-model: an automated protein homologymodeling server, Nucleic Acids Res., 31, 3381–3385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The Swiss-model workspace: a web-based environment for protein structure homology modeling, Bioinformatics, 22, 195–201.

    Article  CAS  PubMed  Google Scholar 

  20. Schindyalov, I. N., and Bourne, P. E. (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Eng., 11, 739–747.

    Article  Google Scholar 

  21. Laskovski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) Procheck: a program to check the stereochemical quality of protein structures, J. Appl. Crystal., 26, 283–291.

    Article  Google Scholar 

  22. Morris, A. L., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1992) Stereochemical quality of protein structure coordinates, Proteins, 12, 345–364.

    Article  CAS  PubMed  Google Scholar 

  23. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program, J. Mol. Graph., 8, 52–56.

    Article  CAS  PubMed  Google Scholar 

  24. Melo, F., Devos, D., Depiereux, E., and Feytmans, E. (1997) Anolea: a www server to assess protein structures, Proc. Int. Conf. Intel. Syst. Mol. Biol., 5, 187–190.

    CAS  Google Scholar 

  25. Melo, F., and Feytmans, E. (1998) Assessing protein structures with a non-local atomic interaction energy, J. Mol. Biol., 277, 1141–1152.

    Article  CAS  PubMed  Google Scholar 

  26. Melo, F., and Feytmans, E. (1997) Novel knowledge-based mean force potential at atomic level, J. Mol. Biol., 267, 207–222.

    Article  CAS  PubMed  Google Scholar 

  27. Maksimenko, A., Turashev, A., Fedorovich, A., Rogoza, A., and Tischenko, E. (2013) Hyaluronidase proof for endothelial glycocalyx as partaker of microcirculation disturbances, J. Life Sci., 7, 171–188.

    CAS  Google Scholar 

  28. Turashev, A. D., Tischenko, E. G., and Maksimenko, A. V. (2009) Glycation of native and chondroitin sulfate-modified hyaluronidase by monosaccharides, Mol. Med., 3, 51–56.

    Google Scholar 

  29. Belem-Goncalves, S., Tsan, P., Lancelin, J.-M., Alves, T. L. M., Salim, V. M., and Besson, F. (2006) Interfacial behavior of bovine testis hyaluronidase, Biochem. J., 398, 569–576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Botzki, A., Rigden, D. J., Braun, S., Nukui, M., Salmen, S., Hoechstetter, J., Bernhardt, G., Dove, S., Jedrzejas, M. J., and Buschauer, A. (2004) L-ascorbic acid G-hexadecanoate, a potent hyaluronidase inhibitor. X-ray structure and molecular modeling of enzyme-inhibitor complexes, J. Biol. Chem., 279, 45990–45997.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, L., Bharadwaj, A. G., Casper, A., Barkley, J., Barycki, J. J., and Simpson, M. A. (2009) Hyaluronidase activity of human Hyal1 requires active site acidic and tyrosine residues, J. Biol. Chem., 284, 9433–9442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hofinger, E. S., Bernhardt, G., and Buschauer, A. (2007) Kinetics of hyal-1 and PH-20 hyaluronidases: comparison of minimal substrates and analysis of the transglycosylation reaction, Glycobiology, 17, 963–971.

    Article  CAS  PubMed  Google Scholar 

  33. Dygai, A. M., Zyuz’kov, G. N., Zhdanov, V. V., Udut, E. V., Miroshnichenko, L. A., Simanina, E. V., Khrichkova, T. Yu., Minakova, M. Yu., and Madonov, P. G. (2013) Specific activity of electron-beam synthesis immobilized hyaluronidase on G-CSF induced mobilization of bone marrow progenitor cells, Stem Cell Rev. Rep., 9, 140–147.

    Article  CAS  Google Scholar 

  34. Zuzkov, G. N., Maksimenko, A. V., Zhdanov, V. V., Udut, E. V., Turashev, A. D., Miroshnichenko, N. A., Simanina, E. V., Chaikovsky, A. V., Minakova, M. U., Artamonov, A. V., Bekarev, A. A., Madonov, P. G., Udut, V. V., and Dygai, M. M. (2013) Specific activity of chondroitin sulfate-modified hyaluronidase in relation to progenitor cell function, Klet. Tekhnol. Biol. Med., 4, 193–196.

    Google Scholar 

  35. Heldin, P., Basu, K., Olofsson, B., Porsch, H., Kozlova, I., and Kahata, K. (2013) Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer, J. Biochem., 154, 395–408.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, J., Wang, W., Kollman, P. A., and Case, D. A. (2006) Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model., 25, 247–260.

    Article  PubMed  Google Scholar 

  37. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004) Development and testing of a general amber force field, J. Comput. Chem., 25, 1157–1174.

    Article  CAS  PubMed  Google Scholar 

  38. Maksimenko, A. V., Petrova, M. L., Tischenko, E. G., and Schechilina, Y. V. (2001) Chemical modification of hyaluronidase regulates its inhibition by heparin, Eur. J. Pharm. Biopharm., 51, 33–38.

    Article  CAS  PubMed  Google Scholar 

  39. Turashev, A. D., Tischenko, E. G., and Maksimenko, A. V. (2009) Non-enzyme glycosylation of native and chondroitin sulfate-modified hyaluronidase by disaccharides, Mol. Med., 6, 50–55.

    Google Scholar 

  40. Maksimenko, A. V. (2008) Effects of glycosaminoglycans in vascular events, Khim. Farm. Zh., 42, 3–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maksimenko.

Additional information

Original Russian Text © A. V. Maksimenko, A. D. Turashev, R. S. Beabealashvili, 2015, published in Biokhimiya, 2015, Vol. 80, No. 3, pp. 348–357.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimenko, A.V., Turashev, A.D. & Beabealashvili, R.S. Stratification of chondroitin sulfate binding sites in 3D-model of bovine testicular hyaluronidase and effective size of glycosaminoglycan coat of the modified protein. Biochemistry Moscow 80, 284–295 (2015). https://doi.org/10.1134/S0006297915030049

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915030049

Key words

Navigation