Skip to main content
Log in

Acid-sensing ion channels and their modulators

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

According to a modern look acid-sensing ion channels (ASICs) are one of the most important receptors that perceive pH change in the body. ASICs represent proton-gated Na+-selective channels, which are expressed in neurons of the central and peripheral nervous system. These channels are attracting attention of researchers around the world, as they are involved in various physiological processes in the body. Drop of pH may occur in tissues in norm (e.g. the accumulation of lactic acid, the release of protons upon ATP hydrolysis) and pathology (inflammation, ischemic stroke, tissue damage and seizure). These processes are accompanied by unpleasant pain sensations, which may be short-lived or can lead to chronic inflammatory diseases. Modulators of ASIC channels activity are potential candidates for new effective analgesic and neuroprotection drugs. This review summarizes available information about structure, function, and physiological role of ASIC channels. In addition a description of all known ligands of these channels and their practical relevance is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ASIC:

acid-sensing ion channel

CNS:

central nervous system

DEG/ENaC:

amiloride-sensitive degenerin/epithelial Na+ channel

EPSP:

excitable postsynaptic potential

GMQ:

2-guanidine-4-methylquinazolin

NSAIDs:

nonsteroidal antiinflammatory drugs

PcTx1:

psalmotoxin 1

SLP3:

stomatin-like protein 3

TM:

transmembrane domain

References

  1. Kellenberger, S., and Schild, L. (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure, Physiol. Rev., 82, 735–767.

    CAS  PubMed  Google Scholar 

  2. Alvarez de la Rosa, D., Krueger, S. R., Kolar, A., Shao, D., Fitzsimonds, R. M., and Canessa, C. M. (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system, J. Physiol., 546, 77–87.

    CAS  PubMed  Google Scholar 

  3. Wemmie, J. A., Askwith, C. C., Lamani, E., Cassell, M. D., Freeman, J. H., and Welsh, M. J. (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning, J. Neurosci., 23, 5496–5502.

    CAS  PubMed  Google Scholar 

  4. Yermolaieva, O., Leonard, A. S., Schnizler, M. K., Abboud, F. M., and Welsh, M. J. (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a, Proc. Natl. Acad. Sci. USA, 101, 6752–6757.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sherwood, T. W., Lee, K. G., Gormley, M. G., and Askwith, C. C. (2011) Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death, J. Neurosci., 31, 9723–9734.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Wemmie, J. A., Chen, J., Askwith, C. C., Hruska-Hageman, A. M., Price, M. P., Nolan, B. C., Yoder, P. G., Lamani, E., Hoshi, T., Freeman, J. H., et al. (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory, Neuron, 34, 463–477.

    CAS  PubMed  Google Scholar 

  7. Gao, J., Duan, B., Wang, D.-G., Deng, X.-H., Zhang, G.-Y., Xu, L., and Xu, T.-L. (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death, Neuron, 48, 635–646.

    CAS  PubMed  Google Scholar 

  8. Yagi, J., Wenk, H. N., Naves, L. A., and McCleskey, E. W. (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia, Circ. Res., 99, 501–509.

    CAS  PubMed  Google Scholar 

  9. Xiong, Z.-G., Zhu, X.-M., Chu, X.-P., Minami, M., Hey, J., Wei, W.-L., MacDonald, J. F., Wemmie, J. A., Price, M. P., Welsh, M. J., et al. (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels, Cell, 118, 687–698.

    CAS  PubMed  Google Scholar 

  10. Friese, M. A., Craner, M. J., Etzensperger, R., Vergo, S., Wemmie, J. A., Welsh, M. J., Vincent, A., and Fugger, L. (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system, Nat. Med., 13, 1483–1489.

    CAS  PubMed  Google Scholar 

  11. Ziemann, A. E., Schnizler, M. K., Albert, G. W., Severson, M. A., Howard, M. A., Welsh, M. J., and Wemmie, J. A. (2008) Seizure termination by acidosis depends on ASIC1a, Nat. Neurosci., 11, 816–822.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Babinski, K., Le, K. T., and Seguela, P. (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties, J. Neurochem., 72, 51–57.

    CAS  PubMed  Google Scholar 

  13. Deval, E., Noel, J., Layliquid Alloui, A., Diochot, S., Friend, V., Jodar, M., Lazdunski, M., and Lingueglia, E. (2008) ASIC3, a sensor of acidic and primary inflammatory pain, EMBO J., 27, 3047–3055.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Deval, E., Noel, J., Gasull, X., Delaunay, A., Alloui, A., Friend, V., Eschalier, A., Lazdunski, M., and Lingueglia, E. (2011) Acid-sensing ion channels in postoperative pain, J. Neurosci., 31, 6059–6066.

    CAS  PubMed  Google Scholar 

  15. Yen, Y.-T., Tu, P.-H., Chen, C.-J., Lin, Y.-W., Hsieh, S.-T., and Chen, C.-C. (2009) Role of acid-sensing ion channel 3 in sub-acute-phase inflammation, Mol. Pain, 5, 1.

    PubMed Central  PubMed  Google Scholar 

  16. Sluka, K. A., Winter, O. C., and Wemmie, J. A. (2009) Acid-sensing ion channels: a new target for pain and CNS diseases, Curr. Opin. Drug Discov. Devel., 12, 693–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Jones, R. C. W., Xu, L., and Gebhart, G. F. (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3, J. Neurosci., 25, 10981–10989.

    CAS  PubMed  Google Scholar 

  18. Page, A. J., Brierley, S. M., Martin, C. M., Price, M. P., Symonds, E., Butler, R., Wemmie, J. A., and Blackshaw, L. A. (2005) Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function, Gut, 54, 1408–1415.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Fromy, B., Lingueglia, E., Sigaudo-Roussel, D., Saumet, J. L., and Lazdunski, M. (2012) Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers, Nat. Med., 18, 1205–1207.

    CAS  PubMed  Google Scholar 

  20. Wultsch, T., Painsipp, E., Shahbazian, A., Mitrovic, M., Edelsbrunner, M., Lazdunski, M., Waldmann, R., and Holzer, P. (2008) Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach-brainstem axis, Pain, 134, 245–253.

    CAS  PubMed  Google Scholar 

  21. Krishtal, O. A., and Pidoplichko, V. I. (1980) A receptor for protons in the nerve cell membrane, Neuroscience, 5, 2325–2327.

    CAS  PubMed  Google Scholar 

  22. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., and Lazdunski, M. (1997) A proton-gated cation channel involved in acid-sensing, Nature, 386, 173–177.

    CAS  PubMed  Google Scholar 

  23. Wemmie, J. A., Price, M. P., and Welsh, M. J. (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities, Trends Neurosci., 29, 578–586.

    CAS  PubMed  Google Scholar 

  24. Coric, T., Zheng, D., Gerstein, M., and Canessa, C. M. (2005) Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel, J. Physiol., 568, 725–735.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Paukert, M., Sidi, S., Russell, C., Siba, M., Wilson, S. W., Nicolson, T., and Grunder, S. (2004) A family of acid-sensing ion channels from the zebrafish: widespread expression in the central nervous system suggests a conserved role in neuronal communication, J. Biol. Chem., 279, 18783–18791.

    CAS  PubMed  Google Scholar 

  26. Jasti, J., Furukawa, H., Gonzales, E. B., and Gouaux, E. (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH, Nature, 449, 316–323.

    CAS  PubMed  Google Scholar 

  27. Gonzales, E. B., Kawate, T., and Gouaux, E. (2009) Pore architecture and ion sites in acid sensing ion channels and P2X receptors, Nature, 460, 599–604.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Benson, C. J., Xie, J., Wemmie, J. A., Price, M. P., Henss, J. M., Welsh, M. J., and Snyder, P. M. (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons, Proc. Natl. Acad. Sci. USA, 99, 2338–2343.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Askwith, C. C., Wemmie, J. A., Price, M. P., Rokhlina, T., and Welsh, M. J. (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hip-pocampal neurons, J. Biol. Chem., 279, 18296–18305.

    CAS  PubMed  Google Scholar 

  30. Saugstad, J. A., Roberts, J. A., Dong, J., Zeitouni, S., and Evans, R. J. (2004) Analysis of the membrane topology of the acid-sensing ion channel 2a, J. Biol. Chem., 279, 55514–55519.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Coscoy, S., de Weille, J. R., Lingueglia, E., and Lazdunski, M. (1999) The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore, J. Biol. Chem., 274, 10129–10132.

    CAS  PubMed  Google Scholar 

  32. Li, T., Yang, Y., and Canessa, C. M. (2011) Outlines of the pore in open and closed conformations describe the gating mechanism of ASIC1, Nat. Commun., 2, 399.

    PubMed  Google Scholar 

  33. Kellenberger, S., Gautschi, I., and Schild, L. (2002) An external site controls closing of the epithelial Na+ channel ENaC, J. Physiol., 543, 413–424.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Paukert, M., Babini, E., Pusch, M., and Grunder, S. (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating, J. Gen. Physiol., 124, 383–394.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Benos, D. J., and Stanton, B. A. (1999) Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels, J. Physiol., 520, 631–644.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Champigny, G., Voilley, N., Waldmann, R., and Lazdunski, M. (1998) Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1, J. Biol. Chem., 273, 15418–15422.

    CAS  PubMed  Google Scholar 

  37. Jing, L., Chu, X.-P., Jiang, Y.-Q., Collier, D. M., Wang, B., Jiang, Q., Snyder, P. M., and Zha, X.-M. (2012) N-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling, J. Neurosci., 32, 4080–4091.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Yang, Y., Yu, Y., Cheng, J., Liu, Y., Liu, D.-S., Wang, J., Zhu, M. X., Wang, R., and Xu, T.-L. (2012) Highly conserved salt bridge stabilizes rigid signal patch at extracellular loop critical for surface expression of acid-sensing ion channels, J. Biol. Chem., 287, 14443–14455.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Jing, L., Jiang, Y.-Q., Jiang, Q., Wang, B., Chu, X.-P., and Zha, X.-M. (2011) The interaction between the first trans-membrane domain and the thumb of ASIC1a is critical for its N-glycosylation and trafficking, PLoS One, 6, e26909.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Cushman, K. A., Marsh-Haffner, J., Adelman, J. P., and McCleskey, E. W. (2007) A conformation change in the extracellular domain that accompanies desensitization of acid-sensing ion channel (ASIC) 3, J. Gen. Physiol., 129, 345–350.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Smith, E. S. J., Zhang, X., Cadiou, H., and McNaughton, P. A. (2007) Proton binding sites involved in the activation of acid-sensing ion channel ASIC2a, Neurosci. Lett., 426, 12–17.

    CAS  PubMed  Google Scholar 

  42. Baron, A., Schaefer, L., Lingueglia, E., Champigny, G., and Lazdunski, M. (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels, J. Biol. Chem., 276, 35361–35367.

    CAS  PubMed  Google Scholar 

  43. Coric, T., Zhang, P., Todorovic, N., and Canessa, C. M. (2003) The extracellular domain determines the kinetics of desensitization in acid-sensitive ion channel 1, J. Biol. Chem., 278, 45240–45247.

    CAS  PubMed  Google Scholar 

  44. Kusama, N., Harding, A. M. S., and Benson, C. J. (2010) Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a), J. Biol. Chem., 285, 17425–17431.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Paukert, M., Chen, X., Polleichtner, G., Schindelin, H., and Grunder, S. (2008) Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a, J. Biol. Chem., 283, 572–581.

    CAS  PubMed  Google Scholar 

  46. Dani, J. A. (1986) Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations, Biophys. J., 49, 607–618.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Immke, D. C., and McCleskey, E. W. (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade, Neuron, 37, 75–84.

    CAS  PubMed  Google Scholar 

  48. Yang, H., Yu, Y., Li, W.-G., Yu, F., Cao, H., Xu, T.-L., and Jiang, H. (2009) Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism, PLoS Biol., 7, e1000151.

    PubMed Central  PubMed  Google Scholar 

  49. Li, T., Yang, Y., and Canessa, C. M. (2009) Interaction of the aromatics Tyr72/Trp288 in the interface of the extracellular and transmembrane domains is essential for proton gating of acid-sensing ion channels, J. Biol. Chem., 284, 4689–4694.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Li, T., Yang, Y., and Canessa, C. M. (2010) Asn415 in the beta11-beta12 linker decreases proton-dependent desensitization of ASIC1, J. Biol. Chem., 285, 31285–31291.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Bargeton, B., and Kellenberger, S. (2010) The contact region between three domains of the extracellular loop of ASIC1a is critical for channel function, J. Biol. Chem., 285, 13816–13826.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Springauf, A., Bresenitz, P., and Grunder, S. (2011) The interaction between two extracellular linker regions controls sustained opening of acid-sensing ion channel 1, J. Biol. Chem., 286, 24374–24384.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Hesselager, M., Timmermann, D. B., and Ahring, P. K. (2004) pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits, J. Biol. Chem., 279, 11006–11015.

    CAS  PubMed  Google Scholar 

  54. Jiang, Q., Li, M.-H., Papasian, C. J., Branigan, D., Xiong, Z.-G., Wang, J. Q., and Chu, X.-P. (2009) Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum, Neuroscience, 162, 55–66.

    CAS  PubMed  Google Scholar 

  55. Allen, N. J., and Attwell, D. (2002) Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischemia-related signals, J. Physiol., 543, 521–529.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Lilley, S., LeTissier, P., and Robbins, J. (2004) The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells, J. Neurosci., 24, 1013–1022.

    CAS  PubMed  Google Scholar 

  57. Baron, A., Voilley, N., Lazdunski, M., and Lingueglia, E. (2008) Acid sensing ion channels in dorsal spinal cord neurons, J. Neurosci., 28, 1498–1508.

    CAS  PubMed  Google Scholar 

  58. Chen, C. C., England, S., Akopian, A. N., and Wood, J. N. (1998) A sensory neuron-specific, proton-gated ion channel, Proc. Natl. Acad. Sci. USA, 95, 10240–10245.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lingueglia, E., de Weille, J. R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R., and Lazdunski, M. (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells, J. Biol. Chem., 272, 29778–29783.

    CAS  PubMed  Google Scholar 

  60. Lingueglia, E. (2007) Acid-sensing ion channels in sensory perception, J. Biol. Chem., 282, 17325–17329.

    CAS  PubMed  Google Scholar 

  61. Waldmann, R. (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons, J. Biol. Chem., 272, 20975–20978.

    CAS  PubMed  Google Scholar 

  62. Lin, Y.-W., Min, M.-Y., Lin, C.-C., Chen, W.-N., Wu, W.-L., Yu, H.-M., and Chen, C.-C. (2008) Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3, Neuroscience, 151, 544–557.

    CAS  PubMed  Google Scholar 

  63. Hattori, T., Chen, J., Harding, A. M. S., Price, M. P., Lu, Y., Abboud, F. M., and Benson, C. J. (2009) ASIC2a and ASIC3 heteromultimerize to form pH-sensitive channels in mouse cardiac dorsal root ganglia neurons, Circ. Res., 105, 279–286.

    CAS  PubMed  Google Scholar 

  64. Immke, D. C., and McCleskey, E. W. (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons, Nat. Neurosci., 4, 869–870.

    CAS  PubMed  Google Scholar 

  65. Price, M. P., McIlwrath, S. L., Xie, J., Cheng, C., Qiao, J., Tarr, D. E., Sluka, K. A., Brennan, T. J., Lewin, G. R., and Welsh, M. J. (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice, Neuron, 32, 1071–1083.

    CAS  PubMed  Google Scholar 

  66. Molliver, D. C., Immke, D. C., Fierro, L., Pare, M., Rice, F. L., and McCleskey, E. W. (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons, Mol. Pain, 1, 35.

    PubMed Central  PubMed  Google Scholar 

  67. Sluka, K. A., Radhakrishnan, R., Benson, C. J., Eshcol, J. O., Price, M. P., Babinski, K., Audette, K. M., Yeomans, D. C., and Wilson, S. P. (2007) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation, Pain, 129, 102–112.

    PubMed Central  PubMed  Google Scholar 

  68. Ikeuchi, M., Kolker, S. J., and Sluka, K. A. (2009) Acid-sensing ion channel 3 expression in mouse knee joint afferents and effects of carrageenan-induced arthritis, J. Pain, 10, 336–342.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Salinas, M., Lazdunski, M., and Lingueglia, E. (2009) Structural elements for the generation of sustained currents by the acid pain sensor ASIC3, J. Biol. Chem., 284, 31851–31859.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Akopian, A. N., Chen, C. C., Ding, Y., Cesare, P., and Wood, J. N. (2000) A new member of the acid-sensing ion channel family, Neuroreport, 11, 2217–2222.

    CAS  PubMed  Google Scholar 

  71. Babini, E., Paukert, M., Geisler, H.-S., and Grunder, S. (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1), J. Biol. Chem., 277, 41597–41603.

    CAS  PubMed  Google Scholar 

  72. Hruska-Hageman, A. M., Wemmie, J. A., Price, M. P., and Welsh, M. J. (2002) Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel), Biochem. J., 361, 443–450.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Zha, X., Costa, V., Harding, A. M. S., Reznikov, L., Benson, C. J., and Welsh, M. J. (2009) ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95, J. Neurosci., 29, 8438–8446.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Cho, J.-H., and Askwith, C. C. (2008) Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice, J. Neurophysiol., 99, 426–441.

    CAS  PubMed  Google Scholar 

  75. Coryell, M. W., Ziemann, A. E., Westmoreland, P. J., Haenfler, J. M., Kurjakovic, Z., Zha, X., Price, M., Schnizler, M. K., and Wemmie, J. A. (2007) Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit, Biol. Psychiatry, 62, 1140–1148.

    CAS  PubMed  Google Scholar 

  76. Wemmie, J. A., Coryell, M. W., Askwith, C. C., Lamani, E., Leonard, A. S., Sigmund, C. D., and Welsh, M. J. (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior, Proc. Natl. Acad. Sci. USA, 101, 3621–3626.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Coryell, M. W., Wunsch, A. M., Haenfler, J. M., Allen, J. E., McBride, J. L., Davidson, B. L., and Wemmie, J. A. (2008) Restoring acid-sensing ion channel-1a in the amygdala of knock-out mice rescues fear memory but not unconditioned fear responses, J. Neurosci., 28, 13738–13741.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Ziemann, A. E., Allen, J. E., Dahdaleh, N. S., Drebot, I. I., Coryell, M. W., Wunsch, A. M., Lynch, C. M., Faraci, F. M., Howard, M. A., Welsh, M. J., et al. (2009) The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior, Cell, 139, 1012–1021.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Borzan, J., Zhao, C., Meyer, R. A., and Raja, S. N. (2010) A role for acid-sensing ion channel 3, but not acid-sensing ion channel 2, in sensing dynamic mechanical stimuli, Anesthesiology, 113, 647–654.

    CAS  PubMed  Google Scholar 

  80. Wetzel, C., Hu, J., Riethmacher, D., Benckendorff, A., Harder, L., Eilers, A., Moshourab, R., Kozlenkov, A., Labuz, D., Caspani, O., et al. (2007) A stomatin-domain protein essential for touch sensation in the mouse, Nature, 445, 206–209.

    CAS  PubMed  Google Scholar 

  81. Drew, L. J., Rohrer, D. K., Price, M. P., Blaver, K. E., Cockayne, D. A., Cesare, P., and Wood, J. N. (2004) Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurons, J. Physiol., 556, 691–710.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Hildebrand, M. S., de Silva, M. G., Klockars, T., Rose, E., Price, M., Smith, R. J. H., McGuirt, W. T., Christopoulos, H., Petit, C., and Dahl, H.-H. M. (2004) Characterization of DRASIC in the mouse inner ear, Hear. Res., 190, 149–160.

    CAS  PubMed  Google Scholar 

  83. Ettaiche, M., Deval, E., Pagnotta, S., Lazdunski, M., and Lingueglia, E. (2009) Acid-sensing ion channel 3 in retinal function and survival, Invest. Ophthalmol. Vis. Sci., 50, 2417–2426.

    PubMed  Google Scholar 

  84. Barnes, C., Tibbitts, T., Sager, J., Deitzer, G., Bubenheim, D., Koerner, G., and Bugbee, B. (1993) Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux, HortScience, 28, 1197–1200.

    CAS  PubMed  Google Scholar 

  85. Huang, S.-J., Yang, W.-S., Lin, Y.-W., Wang, H.-C., and Chen, C.-C. (2008) Increase of insulin sensitivity and reversal of age-dependent glucose intolerance with inhibition of ASIC3, Biochem. Biophys. Res. Commun., 371, 729–734.

    CAS  PubMed  Google Scholar 

  86. Sluka, K. A., Price, M. P., Breese, N. M., Stucky, C. L., Wemmie, J. A., and Welsh, M. J. (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1, Pain, 106, 229–239.

    CAS  PubMed  Google Scholar 

  87. Vergo, S., Craner, M. J., Etzensperger, R., Attfield, K., Friese, M. A., Newcombe, J., Esiri, M., and Fugger, L. (2011) Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model, Brain, 134, 571–584.

    PubMed  Google Scholar 

  88. Dauer, W., and Przedborski, S. (2003) Parkinson’s disease: mechanisms and models, Neuron, 39, 889–909.

    CAS  PubMed  Google Scholar 

  89. Pidoplichko, V. I., and Dani, J. A. (2006) Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage, Proc. Natl. Acad. Sci. USA, 103, 11376–11380.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Arias, R. L., Sung, M.-L. A., Vasylyev, D., Zhang, M.-Y., Albinson, K., Kubek, K., Kagan, N., Beyer, C., Lin, Q., Dwyer, J. M., et al. (2008) Amiloride is neuroprotective in an MPTP model of Parkinson’s disease, Neurobiol. Dis., 31, 334–341.

    CAS  PubMed  Google Scholar 

  91. Dwyer, J. M., Rizzo, S. J., Neal, S. J., Lin, Q., Jow, F., Arias, R. L., Rosenzweig-Lipson, S., Dunlop, J., and Beyer, C. E. (2009) Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models, Psychopharmacology, 203, 41–52.

    CAS  PubMed  Google Scholar 

  92. Somjen, G. G. (1984) Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression, Brain Res., 311, 186–188.

    CAS  PubMed  Google Scholar 

  93. Chesler, M., and Kaila, K. (1992) Modulation of pH by neuronal activity, Trends Neurosci., 15, 396–402.

    CAS  PubMed  Google Scholar 

  94. Ali, A., Pillai, K. P., Ahmad, F. J., Dua, Y., and Vohora, D. (2006) Anticonvulsant effect of amiloride in pentetrazole-induced status epilepticus in mice, Pharmacol. Rep., 58, 242–245.

    CAS  PubMed  Google Scholar 

  95. N’Gouemo, P. (2008) Amiloride delays the onset of pilocarpine-induced seizures in rats, Brain Res., 1222, 230–232.

    PubMed Central  PubMed  Google Scholar 

  96. Weng, J.-Y., Lin, Y.-C., and Lien, C.-C. (2010) Cell typespecific expression of acid-sensing ion channels in hippocampal interneurons, J. Neurosci., 30, 6548–6558.

    CAS  PubMed  Google Scholar 

  97. Rehncrona, S. (1985) Brain acidosis, Ann. Emerg. Med., 14, 770–776.

    CAS  PubMed  Google Scholar 

  98. Siesjo, B. K., Katsura, K. I., Kristian, T., Li, P. A., and Siesjo, P. (1996) Molecular mechanisms of acidosis-mediated damage, Acta Neurochir. Suppl., 66, 8–14.

    CAS  PubMed  Google Scholar 

  99. Siesjo, B. K. (1988) Acidosis and ischemic brain damage, Neurochem. Pathol., 9, 31–88.

    CAS  PubMed  Google Scholar 

  100. Li, M., Inoue, K., Branigan, D., Kratzer, E., Hansen, J. C., Chen, J. W., Simon, R. P., and Xiong, Z.-G. (2010) Acid-sensing ion channels in acidosis-induced injury of human brain neurons, J. Cereb. Blood Flow Metab., 30, 1247–1260.

    PubMed Central  PubMed  Google Scholar 

  101. Pignataro, G., Simon, R. P., and Xiong, Z.-G. (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischemia, Brain, 130, 151–158.

    PubMed  Google Scholar 

  102. Mazzuca, M., Heurteaux, C., Alloui, A., Diochot, S., Baron, A., Voilley, N., Blondeau, N., Escoubas, P., Gelot, A., Cupo, A., et al. (2007) A tarantula peptide against pain via ASIC1a channels and opioid mechanisms, Nat. Neurosci., 10, 943–945.

    CAS  PubMed  Google Scholar 

  103. Duan, B., Wu, L.-J., Yu, Y.-Q., Ding, Y., Jing, L., Xu, L., Chen, J., and Xu, T.-L. (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity, J. Neurosci., 27, 11139–11148.

    CAS  PubMed  Google Scholar 

  104. Sutherland, S. P., Benson, C. J., Adelman, J. P., and McCleskey, E. W. (2001) Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons, Proc. Natl. Acad. Sci. USA, 98, 711–716.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Chu, X.-P., Wemmie, J. A., Wang, W.-Z., Zhu, X.-M., Saugstad, J. A., Price, M. P., Simon, R. P., and Xiong, Z.-G. (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels, J. Neurosci., 24, 8678–8689.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Jiang, Q., Inoue, K., Wu, X., Papasian, C. J., Wang, J. Q., Xiong, Z. G., and Chu, X. P. (2011) Cysteine 149 in the extracellular finger domain of acid-sensing ion channel 1b subunit is critical for zinc-mediated inhibition, Neuroscience, 193, 89–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Jiang, Q., Papasian, C. J., Wang, J. Q., Xiong, Z. G., and Chu, X. P. (2010) Inhibitory regulation of acid-sensing ion channel 3 by zinc, Neuroscience, 169, 574–583.

    CAS  PubMed  Google Scholar 

  108. Wang, W., Yu, Y., and Xu, T.-L. (2007) Modulation of acid-sensing ion channels by Cu2+ in cultured hypothalamic neurons of the rat, Neuroscience, 145, 631–641.

    CAS  PubMed  Google Scholar 

  109. Babinski, K., Catarsi, S., Biagini, G., and Seguela, P. (2000) Mammalian ASIC2a and ASIC3 subunits coassemble into heteromeric proton-gated channels sensitive to Gd3+, J. Biol. Chem., 275, 28519–28525.

    CAS  PubMed  Google Scholar 

  110. Ugawa, S., Ueda, T., Takahashi, E., Hirabayashi, Y., Yoneda, T., Komai, S., and Shimada, S. (2001) Cloning and functional expression of ASIC-beta2, a splice variant of ASIC-beta, Neuroreport, 12, 2865–2869.

    CAS  PubMed  Google Scholar 

  111. De Weille, J. R., Bassilana, F., Lazdunski, M., and Waldmann, R. (1998) Identification, functional expression and chromosomal localization of a sustained human proton-gated cation channel, FEBS Lett., 433, 257–260.

    PubMed  Google Scholar 

  112. Li, W.-G., Yu, Y., Huang, C., Cao, H., and Xu, T.-L. (2011) Nonproton ligand sensing domain is required for paradoxical stimulation of acid-sensing ion channel 3 (ASIC3) channels by amiloride, J. Biol. Chem., 286, 42635–42646.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Dube, G. R., Lehto, S. G., Breese, N. M., Baker, S. J., Wang, X., Matulenko, M. A., Honore, P., Stewart, A. O., Moreland, R. B., and Brioni, J. D. (2005) Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels, Pain, 117, 88–96.

    CAS  PubMed  Google Scholar 

  114. Voilley, N., de Weille, J., Mamet, J., and Lazdunski, M. (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors, J. Neurosci., 21, 8026–8033.

    CAS  PubMed  Google Scholar 

  115. Garza, A., Lopez-Ramirez, O., Vega, R., and Soto, E. (2010) The aminoglycosides modulate the acid-sensing ionic channel currents in dorsal root ganglion neurons from the rat, J. Pharmacol. Exp. Ther., 332, 489–499.

    CAS  PubMed  Google Scholar 

  116. Smith, E. S., Cadiou, H., and McNaughton, P. A. (2007) Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action, Neuroscience, 145, 686–698.

    CAS  PubMed  Google Scholar 

  117. Chen, X., Qiu, L., Li, M., Durrnagel, S., Orser, B. A., Xiong, Z.-G., and MacDonald, J. F. (2010) Diarylamidines: high potency inhibitors of acid-sensing ion channels, Neuropharmacology, 58, 1045–1053.

    CAS  PubMed  Google Scholar 

  118. Yu, Y., Chen, Z., Li, W.-G., Cao, H., Feng, E.-G., Yu, F., Liu, H., Jiang, H., and Xu, T.-L. (2010) A nonproton lig- and sensor in the acid-sensing ion channel, Neuron, 68, 61–72.

    CAS  PubMed  Google Scholar 

  119. Wang, X., Li, W.-G., Yu, Y., Xiao, X., Cheng, J., Zeng, W.-Z., Peng, Z., Xi Zhu, M., and Xu, T.-L. (2013) Serotonin facilitates peripheral pain sensitivity in a manner that depends on the nonproton ligand sensing domain of ASIC3 channel, J. Neurosci., 33, 4265–4279.

    CAS  PubMed  Google Scholar 

  120. Dubinnyi, M. A., Osmakov, D. I., Koshelev, S. G., Kozlov, S. A., Andreev, Y. A., Zakaryan, N. A., Dyachenko, I. A., Bondarenko, D. A., Arseniev, A. S., and Grishin, E. V. (2012) Lignan from thyme possesses inhibitory effect on ASIC3 channel current, J. Biol. Chem., 287, 32993–33000.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Askwith, C. C., Cheng, C., Ikuma, M., Benson, C., Price, M. P., and Welsh, M. J. (2000) Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels, Neuron, 26, 133–141.

    CAS  PubMed  Google Scholar 

  122. Deval, E., Baron, A., Lingueglia, E., Mazarguil, H., Zajac, J.-M., and Lazdunski, M. (2003) Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability, Neuropharmacology, 44, 662–671.

    CAS  PubMed  Google Scholar 

  123. Sherwood, T. W., and Askwith, C. C. (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death, J. Neurosci., 29, 14371–14380.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Bohlen, C. J., Chesler, A. T., Sharif-Naeini, R., Medzihradszky, K. F., Zhou, S., King, D., Sanchez, E. E., Burlingame, A. L., Basbaum, A. I., and Julius, D. (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain, Nature, 479, 410–414.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Escoubas, P., De Weille, J. R., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., Menez, F., and Lazdunski, M. (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels, J. Biol. Chem., 275, 25116–25121.

    CAS  PubMed  Google Scholar 

  126. Chen, X., Kalbacher, H., and Grunder, S. (2006) Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent, J. Gen. Physiol., 127, 267–276.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Diochot, S., Baron, A., Rash, L. D., Deval, E., Escoubas, P., Scarzello, S., Salinas, M., and Lazdunski, M. (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons, EMBO J., 23, 1516–1525.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Diochot, S., Baron, A., Salinas, M., Douguet, D., Scarzello, S., Dabert-Gay, A.-S., Debayle, D., Friend, V., Alloui, A., Lazdunski, M., et al. (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain, Nature, 490, 552–555.

    CAS  PubMed  Google Scholar 

  129. Kozlov, S. A., Osmakov, D. I., Andreev, Y. A., Koshelev, S. G., Gladkikh, I. N., Monastyrnaya, M. M., Kozlovskaya, E. P., and Grishin, E. V. (2012) A sea anemone polypeptide toxin inhibiting the ASIC3 acid-sensitive channel, Russ. J. Bioorg. Chem., 38, 578–583.

    CAS  Google Scholar 

  130. Osmakov, D. I., Kozlov, S. A., Andreev, Y. A., Koshelev, S. G., Sanamyan, N. P., Sanamyan, K. E., Dyachenko, I. A., Bondarenko, D. A., Murashev, A. N., Mineev, K. S., et al. (2013) Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity, J. Biol. Chem., 288, 23116–23127.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Farooqui, A. A., and Horrocks, L. A. (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly, Neuroscientist, 12, 245–260.

    CAS  PubMed  Google Scholar 

  132. Sherwood, T. W., and Askwith, C. C. (2008) Endogenous arginine-phenylalanine-amide-related peptides alter steady-state desensitization of ASIC1a, J. Biol. Chem., 283, 1818–1830.

    CAS  PubMed  Google Scholar 

  133. Ostrovskaya, O., Moroz, L., and Krishtal, O. (2004) Modulatory action of RFamide-related peptides on acid-sensing ionic channels is pH dependent: the role of arginine, J. Neurochem., 91, 252–255.

    CAS  PubMed  Google Scholar 

  134. Wang, W.-Z., Chu, X.-P., Li, M.-H., Seeds, J., Simon, R. P., and Xiong, Z.-G. (2006) Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intra-cellular pH, J. Biol. Chem., 281, 29369–29378.

    CAS  PubMed  Google Scholar 

  135. Zhang, P., Sigworth, F. J., and Canessa, C. M. (2006) Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism, J. Gen. Physiol., 127, 109–117.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Duan, B., Wang, Y.-Z., Yang, T., Chu, X.-P., Yu, Y., Huang, Y., Cao, H., Hansen, J., Simon, R. P., Zhu, M. X., et al. (2011) Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis, J. Neurosci., 31, 2101–2112.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Adams, C. M., Snyder, P. M., and Welsh, M. J. (1999) Paradoxical stimulation of a DEG/ENaC channel by amiloride, J. Biol. Chem., 274, 15500–15504.

    CAS  PubMed  Google Scholar 

  138. Ugawa, S., Ueda, T., Ishida, Y., Nishigaki, M., Shibata, Y., and Shimada, S. (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors, J. Clin. Invest., 110, 1185–1190.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Hamill, O. P., and McBride, D. W. (1996) The pharmacology of mechanogated membrane ion channels, Pharmacol. Rev., 48, 231–252.

    CAS  PubMed  Google Scholar 

  140. Dorofeeva, N. A., Barygin, O. I., Staruschenko, A., Bolshakov, K. V., and Magazanik, L. G. (2008) Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons, J. Neurochem., 106, 429–441.

    CAS  PubMed  Google Scholar 

  141. Raisinghani, M., and Premkumar, L. S. (2005) Block of native and cloned vanilloid receptor 1 (TRPV1) by aminoglycoside antibiotics, Pain, 113, 123–133.

    CAS  PubMed  Google Scholar 

  142. Yu, Y., Li, W.-G., Chen, Z., Cao, H., Yang, H., Jiang, H., and Xu, T.-L. (2011) Atomic level characterization of the nonproton ligand-sensing domain of ASIC3 channels, J. Biol. Chem., 286, 24996–25006.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Andreev, Y. A., Kozlov, S. A., Korolkova, Y. V., Dyachenko, I. A., Bondarenko, D. A., Skobtsov, D. I., Murashev, A. N., Kotova, P. D., Rogachevskaja, O. A., Kabanova, N. V., et al. (2013) Polypeptide modulators of TRPV1 produce analgesia without hyperthermia, Mar. Drugs, 11, 5100–5115.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Norton, R. S., and Pallaghy, P. K. (1998) The cystine knot structure of ion channel toxins and related polypeptides, Toxicon, 36, 1573–1583.

    CAS  PubMed  Google Scholar 

  145. Swartz, K. J., and MacKinnon, R. (1995) An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula, Neuron, 15, 941–949.

    CAS  PubMed  Google Scholar 

  146. Vassilevski, A. A., Kozlov, S. A., and Grishin, E. V. (2009) Molecular diversity of spider venom, Biochemistry (Moscow), 74, 1505–1534.

    CAS  Google Scholar 

  147. Chen, X., Kalbacher, H., and Grunder, S. (2005) The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity, J. Gen. Physiol., 126, 71–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Saez, N. J., Mobli, M., Bieri, M., Chassagnon, I. R., Malde, A. K., Gamsjaeger, R., Mark, A. E., Gooley, P. R., Rash, L. D., and King, G. F. (2011) A dynamic pharmacophore drives the interaction between psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a, Mol. Pharmacol., 80, 796–808.

    CAS  PubMed  Google Scholar 

  149. Qadri, Y. J., Berdiev, B. K., Song, Y., Lippton, H. L., Fuller, C. M., and Benos, D. J. (2009) Psalmotoxin-1 docking to human acid-sensing ion channel-1, J. Biol. Chem., 284, 17625–17633.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Sherwood, T., Franke, R., Conneely, S., Joyner, J., Arumugan, P., and Askwith, C. (2009) Identification of protein domains that control proton and calcium sensitivity of ASIC1a, J. Biol. Chem., 284, 27899–27907.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Baconguis, I., and Gouaux, E. (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes, Nature, 489, 400–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Baconguis, I., Bohlen, C. J., Goehring, A., Julius, D., and Gouaux, E. (2014) X-Ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel, Cell, 156, 717–729.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Kini, R. M., and Doley, R. (2010) Structure, function and evolution of three-finger toxins: mini proteins with multiple targets, Toxicon, 56, 855–867.

    CAS  PubMed  Google Scholar 

  154. Schroeder, C. I., Rash, L. D., Vila-Farres, X., Rosengren, K. J., Mobli, M., King, G. F., Alewood, P. F., Craik, D. J., and Durek, T. (2014) Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2, Angew. Chem. Int. Ed. Engl., 53, 1017–1020.

    CAS  PubMed  Google Scholar 

  155. Kozlov, S., and Grishin, E. (2012) Convenient nomenclature of cysteine-rich polypeptide toxins from sea anemones, Peptides, 33, 240–244.

    CAS  PubMed  Google Scholar 

  156. Chagot, B., Escoubas, P., Diochot, S., Bernard, C., Lazdunski, M., and Darbon, H. (2005) Solution structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels, Protein Sci., 14, 2003–2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Anangi, R., Chen, C.-C., Lin, Y.-W., Cheng, Y.-R., Cheng, C.-H., Chen, Y.-C., Chu, Y.-P., and Chuang, W.-J. (2010) Expression in Pichia pastoris and characterization of APETx2, a specific inhibitor of acid sensing ion channel 3, Toxicon, 56, 1388–1397.

    CAS  PubMed  Google Scholar 

  158. Anangi, R., Rash, L. D., Mobli, M., and King, G. F. (2012) Functional expression in Escherichia coli of the disulfide-rich sea anemone peptide APETx2, a potent blocker of acid-sensing ion channel 3, Mar. Drugs, 10, 1605–1618.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Karczewski, J., Spencer, R. H., Garsky, V. M., Liang, A., Leitl, M. D., Cato, M. J., Cook, S. P., Kane, S., and Urban, M. O. (2010) Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2, Br. J. Pharmacol., 161, 950–960.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Blanchard, M. G., Rash, L. D., and Kellenberger, S. (2012) Inhibition of voltage-gated Na+ currents in sensory neurons by the sea anemone toxin APETx2, Br. J. Pharmacol., 165, 2167–2177.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Peigneur, S., Beress, L., Moller, C., Mari, F., Forssmann, W.-G., and Tytgat, J. (2012) A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins, FASEB J., 26, 5141–5151.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kozlov.

Additional information

Original Russian Text © D. I. Osmakov, Ya. A. Andreev, S. A. Kozlov, 2014, published in Uspekhi Biologicheskoi Khimii, 2014, Vol. 54, pp. 231–266.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmakov, D.I., Andreev, Y.A. & Kozlov, S.A. Acid-sensing ion channels and their modulators. Biochemistry Moscow 79, 1528–1545 (2014). https://doi.org/10.1134/S0006297914130069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914130069

Key words

Navigation