Skip to main content
Log in

Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The recent revival of old theories and setting them on modern scientific rails to a large extent are also relevant to mitochondrial science. Given the widespread belief that mitochondria are symbionts of ancient bacterial origin, the processes inherent to mitochondrial physiology can be revised based on their comparative analysis with possible involvement of bacteria. Such comparison combined with discussion of the role of microbiota in pathogenesis allows discussion of the role of “mitobiota” (we introduce this term) as the combination of different phenotypic manifestations of mitochondria in the organism reflecting pathological changes in the mitochondrial genome. When putting an equal sign between mitochondria and bacteria, we find similarity between the mitochondrial and bacterial theories of cancer. The presence of the term “bacterial infection” suggests “mitochondrial infection”, and mitochondrial (oxidative) theory of aging can in some way be transformed into a “bacterial theory of aging”. The possible existence of such processes and the data confirming their presence are discussed in this review. If such a comparison has the right to exist, the homeostasis of “mitobiota” is of not lesser physiological importance than homeostasis of microbiota, which has been so intensively discussed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zorov, D. B., Plotnikov, E. Y., Jankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pulkova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury, Biochemistry (Moscow), 77, 742–753.

    CAS  Google Scholar 

  2. Zorov, D. B., Isaev, N. K., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Morosanova, M. A., Jankauskas, S. S., Zorov, S. D., and Babenko, V. A. (2013) Perspectives of mitochondrial medicine, Biochemistry (Moscow), 78, 979–990.

    CAS  Google Scholar 

  3. Henle, J. (1841) Mischungs und forbestandteile des menschlichen korpers, in Allgemeine Anatomie, Varlag Leopold Voss, Leipzig, pp. 573–613.

    Google Scholar 

  4. Kolliker, A. (1857) Einige bemerkungen uber die endigungen der hautnerven und den bau der muskein, Zwiss Zool., 8, 311–325.

    Google Scholar 

  5. Retzius, G. (1890) Muskelfibrille und sarcoplasma, Biol. Untersuchungen Neue Folge, 1, 51–88.

    Google Scholar 

  6. Cajal, S. (1888) Observations sur la texture des fibres musculaires des pattes et des ailes des insects, Int. Monatszeitschrift Anat. Physiol., 205–232, 253–276.

    Google Scholar 

  7. Regaud, C., and Favre, M. (1909) Granulations interstitielles et mitochondries des fibres musculaires striees, Compt. Rend., 148, 661–664.

    Google Scholar 

  8. Benda, C. (1900) Weitere beobachtungen uber die mitochondria und ihr verhaltnus zu sekretgranulationen nebst kritischen bemerkungen, Arch. Anat. Physiol., 24, 166–178.

    Google Scholar 

  9. Mereschkowski, C. (1905) Uber natur und ursprung der chromatophoren im pflanzenreiche, Biol. Centralbl., 25, 593–604.

    Google Scholar 

  10. Mereschkowsky, K. (1910) Theorie der zwei plasmaarten als grundlage der symbiogenesis, einer neuen lehre von der ent-stehung der organismen, Biol. Centralbl., 30, 353–367.

    Google Scholar 

  11. Schimper, A. (1883) Uber die entwicklung der chlorophyllkorner und farbkorper, Bot. Zeitung, 30, 105–114, 121–131, 137–146, 153–162.

    Google Scholar 

  12. Wallin, I. (1923) The mitochondria problem, Amer. Nat., 57, 255–261.

    Google Scholar 

  13. Wallin, I. (1927) Symbionticism and the origin of species, in The American Naturalist, Williams & Wilkins Company, Baltimore.

    Google Scholar 

  14. Sagan, L. (1967) On the origin of mitosing cells, J. Theor. Biol., 14, 255–274.

    PubMed  CAS  Google Scholar 

  15. Margulis, L. (1971) Symbiosis and evolution, Sci. Am., 225, 48–57.

    PubMed  CAS  Google Scholar 

  16. Harada, S., Inaoka, D. K., Ohmori, J., and Kita, K. (2013) Diversity of parasite complex II, Biochim. Biophys. Acta, 1827, 658–667.

    PubMed  CAS  Google Scholar 

  17. Collins, T. J., Berridge, M. J., Lipp, P., and Bootman, M. D. (2002) Mitochondria are morphologically and functionally heterogeneous within cells, EMBO J., 21, 1616–1627.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999) Ubiquitin tag for sperm mitochondria, Nature, 402, 371–372.

    PubMed  CAS  Google Scholar 

  19. Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., and Youle, R. J. (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J. Cell Biol., 191, 933–942.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Hawrelak, J. A., and Myers, S. P. (2004) The causes of intestinal dysbiosis: a review, Altern. Med. Rev., 9, 180–197.

    PubMed  Google Scholar 

  21. Kuhne, L. (1893) Die neue Heilwissenschaft oder die Lehre von der Einheit aller Krankheiten und deren darauf begrundete einheitliche, arzneilose und operationslose Heilung, Verlag von Louis Kuhne, Leipzig.

    Google Scholar 

  22. Mechnikov, I. (1915) On the Nature of Man [in Russian], Nauchnoe Slovo.

    Google Scholar 

  23. Dominguez, J. A., and Coopersmith, C. M. (2010) Can we protect the gut in critical illness? The role of growth factors and other novel approaches, Crit. Care Clin., 26, 549–565.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Schwartz, R. F., Neu, J., Schatz, D., Atkinson, M. A., and Wasserfall, C. (2007) Comment on: Brugman, S., et al. (2006) Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia, 50, 220–221.

    PubMed  CAS  Google Scholar 

  25. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., and Burcelin, R. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat-diet-induced obesity and diabetes in mice, Diabetes, 57, 1470–1481.

    PubMed  CAS  Google Scholar 

  26. Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., and Delzenne, N. M. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxemia, Diabetologia, 50, 2374–2383.

    PubMed  CAS  Google Scholar 

  27. Bukowska, H., Pieczul-Mroz, J., Jastrzebska, M., Chelstowski, K., and Naruszewicz, M. (1998) Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with Lactobacillus plantarum in subjects with moderately elevated cholesterol, Atherosclerosis, 137, 437–438.

    PubMed  CAS  Google Scholar 

  28. Shimizu, K., Ogura, H., Goto, M., Asahara, T., Nomoto, K., Morotomi, M., Yoshiya, K., Matsushima, A., Sumi, Y., Kuwagata, Y., Tanaka, H., Shimazu, T., and Sugimoto, H. (2006) Altered gut flora and environment in patients with severe SIRS, J. Trauma, 60, 126–133.

    PubMed  Google Scholar 

  29. Maejima, K., Deitch, E., and Berg, R. (1984) Promotion by burn stress of the translocation of bacteria from the gastrointestinal tracts of mice, Arch. Surg., 119, 166–172.

    PubMed  CAS  Google Scholar 

  30. Maejima, K., Deitch, E. A., and Berg, R. D. (1984) Bacterial translocation from the gastrointestinal tracts of rats receiving thermal injury, Infect. Immun., 43, 6–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. LeVoyer, T., Cioffi, W. G., Jr., Pratt, L., Shippee, R., McManus, W. F., Mason, A. D., Jr., and Pruitt, B. A., Jr. (1992) Alterations in intestinal permeability after thermal injury, Arch. Surg., 127, 26–29, discussion 29–30.

    PubMed  CAS  Google Scholar 

  32. Bolte, E. R. (1998) Autism and Clostridium tetani, Med. Hypotheses, 51, 133–144.

    PubMed  CAS  Google Scholar 

  33. Finegold, S. M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M. L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E. M., Collins, M. D., Lawson, P. A., Summanen, P., Baysallar, M., Tomzynski, T. J., Read, E., Johnson, E., Rolfe, R., Nasir, P., Shah, H., Haake, D. A., Manning, P., and Kaul, A. (2002) Gastrointestinal microflora studies in late-onset autism, Clin. Infect. Dis., 35, S6-S16.

  34. McKeever, T. M., Lewis, S. A., Smith, C., Collins, J., Heatlie, H., Frischer, M., and Hubbard, R. (2002) Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database, J. Allergy Clin. Immunol., 109, 43–50.

    PubMed  Google Scholar 

  35. Sekirov, I., Russell, S. L., Antunes, L. C., and Finlay, B. B. (2010) Gut microbiota in health and disease, Physiol. Rev., 90, 859–904.

    PubMed  CAS  Google Scholar 

  36. Angus, D. C. (2011) The search for effective therapy for sepsis: back to the drawing board? J. Am. Med. Assoc., 306, 2614–2615.

    CAS  Google Scholar 

  37. Cauwels, A., Rogge, E., Vandendriessche, B., Shiva, S., and Brouckaert, P. (2014) Extracellular ATP drives systemic inflammation, tissue damage and mortality, Cell Death Dis., 5, e1102.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. NY Acad. Sci., 959, 214–237.

    PubMed  CAS  Google Scholar 

  39. Agteresch, H. J., Dagnelie, P. C., van den Berg, J. W., and Wilson, J. H. (1999) Adenosine triphosphate: established and potential clinical applications, Drugs, 58, 211–232.

    PubMed  CAS  Google Scholar 

  40. Murry, C. E., Jennings, R. B., and Reimer, K. A. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, 74, 1124–1136.

    PubMed  CAS  Google Scholar 

  41. LeBlanc, J., Roberge, C., Valliere, J., and Oakson, G. (1971) The sympathetic nervous system in short-term adaptation to cold, Can. J. Physiol. Pharmacol., 49, 96–101.

    PubMed  CAS  Google Scholar 

  42. Yun, J., and Finkel, T. (2014) Mitohormesis, Cell Metab., 19, 757–766.

    PubMed  CAS  Google Scholar 

  43. Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169–202.

    PubMed  CAS  Google Scholar 

  44. Cunha, F. M., Caldeira da Silva, C. C., Cerqueira, F. M., and Kowaltowski, A. J. (2011) Mild mitochondrial uncoupling as a therapeutic strategy, Curr. Drug Targets, 12, 783–789.

    PubMed  CAS  Google Scholar 

  45. Abbracchio, M. P., Burnstock, G., Verkhratsky, A., and Zimmermann, H. (2009) Purinergic signalling in the nervous system: an overview, Trends Neurosci., 32, 19–29.

    PubMed  CAS  Google Scholar 

  46. Krysko, O., Love Aaes, T., Bachert, C., Vandenabeele, P., and Krysko, D. V. (2013) Many faces of DAMPs in cancer therapy, Cell Death Dis., 4, e631.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Boya, P., Roques, B., and Kroemer, G. (2001) New EMBO members’ review: viral and bacterial proteins regulating apoptosis at the mitochondrial level, EMBO J., 20, 4325–4331.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Kozjak-Pavlovic, V., Ross, K., and Rudel, T. (2008) Import of bacterial pathogenicity factors into mitochondria, Curr. Opin. Microbiol., 11, 9–14.

    PubMed  CAS  Google Scholar 

  49. Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death, Physiol. Rev., 87, 99–163.

    PubMed  CAS  Google Scholar 

  50. Skulachev, V. P. (2000) Mitochondria in the programmed death phenomena; a principle of biology: “it is better to die than to be wrong”, Life, 49, 365–373.

    PubMed  CAS  Google Scholar 

  51. Macbride, D. (1772) A Methodical Introduction to the Theory and Practice of Physic, Science.

    Google Scholar 

  52. Onuigbo, W. I. (1975) Some nineteenth century ideas on links between tuberculous and cancerous diseases of the lung, Br. J. Dis. Chest, 69, 207–210.

    PubMed  CAS  Google Scholar 

  53. Broxmeyer, L. (2004) Is cancer just an incurable infectious disease? Med. Hypotheses, 63, 986–996.

    PubMed  CAS  Google Scholar 

  54. Virchow, R. (1860) Cellular Pathology, Churchill, London.

    Google Scholar 

  55. Virchow, R. (1863) Die Krankhaften Geschwulste, August Hirshwald, Berlin.

    Google Scholar 

  56. Balkwill, F., and Mantovani, A. (2001) Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.

    PubMed  CAS  Google Scholar 

  57. Morrison, W. B. (2012) Inflammation and cancer: a comparative view, J. Vet. Intern. Med., 26, 18–31.

    PubMed  Google Scholar 

  58. Bierne, H., Hamon, M., and Cossart, P. (2014) Epigenetics and bacterial infections, Cold Spring Harb. Perspect. Med., 2, a010272.

  59. Gaylord, H. R. (1901) The protozoon of cancer. A preliminary report based upon three years’ work in the New York State Pathological Laboratory of the University of Buffalo, Am. J. Med. Sci., 121, 503–539.

    Google Scholar 

  60. Wainwright, A. M. (2006) The potential role of non-virus microorganisms in cancer, Curr. Trends Microbiol., 48-59.

  61. Peter, S., and Beglinger, C. (2007) Helicobacter pylori and gastric cancer: the causal relationship, Digestion, 75, 25–35.

    PubMed  Google Scholar 

  62. Correa, P., and Houghton, J. (2007) Carcinogenesis of Helicobacter pylori, Gastroenterology, 133, 659–672.

    PubMed  CAS  Google Scholar 

  63. Hussell, T., Isaacson, P. G., Crabtree, J. E., and Spencer, J. (1993) The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori, Lancet, 342, 571–574.

    PubMed  CAS  Google Scholar 

  64. Mc, C. W., and Mason, J. M., 3rd (1951) Enterococcal endocarditis associated with carcinoma of the sigmoid: report of a case, J. Med. Assoc. State Ala., 21, 162–166.

    Google Scholar 

  65. Littman, A. J., Jackson, L. A., and Vaughan, T. L. (2005) Chlamydia pneumoniae and lung cancer: epidemiological evidence, Cancer Epidemiol. Biomarkers Prev., 14, 773–778.

    PubMed  CAS  Google Scholar 

  66. Littman, A. J., White, E., Jackson, L. A., Thornquist, M. D., Gaydos, C. A., Goodman, G. E., and Vaughan, T. L. (2004) Chlamydia pneumoniae infection and risk of lung cancer, Cancer Epidemiol. Biomarkers Prevent., 13, 1624–1630.

    Google Scholar 

  67. Kovalchuk, O., Walz, P., and Kovalchuk, I. (2014) Does bacterial infection cause genome instability and cancer in the host cell? Mutat. Res., 761C, 1–14.

    Google Scholar 

  68. Parsonnet, J. (1995) Bacterial infection as a cause of cancer, Environ. Health Perspect., 103, Suppl. 8, 263–268.

    PubMed  PubMed Central  Google Scholar 

  69. Szent-Gyorgyi, A. (1977) The living state and cancer, Proc. Natl. Acad. Sci. USA, 74, 2844–2847.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Warburg, O. (1956) On the origin of cancer cells, Science, 123, 309–314.

    PubMed  CAS  Google Scholar 

  71. Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10–15.

    PubMed  Google Scholar 

  72. Zorov, D. B., Krasnikov, B. F., Kuzminova, A. E., Vysokikh, M., and Zorova, L. D. (1997) Mitochondria revisited. Alternative functions of mitochondria, Biosci. Rep., 17, 507–520.

    PubMed  CAS  Google Scholar 

  73. Ramanathan, A., Wang, C., and Schreiber, S. L. (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements, Proc. Natl. Acad. Sci. USA, 102, 5992–5997.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Mayevsky, A. (2009) Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives, Mitochondrion, 9, 165–179.

    PubMed  CAS  Google Scholar 

  75. Seyfried, T. N., and Shelton, L. M. (2010) Cancer as a metabolic disease, Nutr. Metab. (Lond.), 7, 7.

    Google Scholar 

  76. Roskelley, R. C., Mayer, N., Horwitt, B. N., and Salter, W. T. (1943) Studies in cancer. VII. Enzyme deficiency in human and experimental cancer, J. Clin. Invest., 22, 743–751.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. John, A. P. (2001) Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: the impact of this on the treatment of cancer, Med. Hypotheses, 57, 429–431.

    PubMed  CAS  Google Scholar 

  78. Galluzzi, L., Morselli, E., Kepp, O., Vitale, I., Rigoni, A., Vacchelli, E., Michaud, M., Zischka, H., Castedo, M., and Kroemer, G. (2010) Mitochondrial gateways to cancer, Mol. Aspects Med., 31, 1–20.

    PubMed  CAS  Google Scholar 

  79. Cuezva, J. M., Krajewska, M., de Heredia, M. L., Krajewski, S., Santamaria, G., Kim, H., Zapata, J. M., Marusawa, H., Chamorro, M., and Reed, J. C. (2002) The bioenergetic signature of cancer: a marker of tumor progression, Cancer Res., 62, 6674–6681.

    PubMed  CAS  Google Scholar 

  80. Welter, C., Kovacs, G., Seitz, G., and Blin, N. (1989) Alteration of mitochondrial DNA in human oncocytomas, Genes Chromosomes Cancer, 1, 79–82.

    PubMed  CAS  Google Scholar 

  81. Savagner, F., Franc, B., Guyetant, S., Rodien, P., Reynier, P., and Malthiery, Y. (2001) Defective mitochondrial ATP synthesis in oxyphilic thyroid tumors, J. Clin. Endocrinol. Metab., 86, 4920–4925.

    PubMed  CAS  Google Scholar 

  82. Simonnet, H., Alazard, N., Pfeiffer, K., Gallou, C., Beroud, C., Demont, J., Bouvier, R., Schagger, H., and Godinot, C. (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma, Carcinogenesis, 23, 759–768.

    PubMed  CAS  Google Scholar 

  83. Bonora, E., Porcelli, A. M., Gasparre, G., Biondi, A., Ghelli, A., Carelli, V., Baracca, A., Tallini, G., Martinuzzi, A., Lenaz, G., Rugolo, M., and Romeo, G. (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III, Cancer Res., 66, 6087–6096.

    PubMed  CAS  Google Scholar 

  84. Demasi, A. P., Furuse, C., Altemani, A., Junqueira, J. L., Oliveira, P. R., and Araujo, V. C. (2009) Peroxiredoxin I is overexpressed in oncocytic lesions of salivary glands, J. Oral Pathol. Med., 38, 514–517.

    PubMed  CAS  Google Scholar 

  85. Israel, B. A., and Schaeffer, W. I. (1987) Cytoplasmic suppression of malignancy, In vitro Cell Dev. Biol., 23, 627–632.

    PubMed  CAS  Google Scholar 

  86. Raetz, C. R., and Whitfield, C. (2002) Lipopolysaccharide endotoxins, Annu. Rev. Biochem., 71, 635–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Wang, X., and Quinn, P. J. (2010) Endotoxins: lipopolysaccharides of gram-negative bacteria, Subcell. Biochem., 53, 3–25.

    PubMed  CAS  Google Scholar 

  88. Heumann, D., and Roger, T. (2002) Initial responses to endotoxins and Gram-negative bacteria, Clin. Chim. Acta, 323, 59–72.

    PubMed  CAS  Google Scholar 

  89. Remick, D. G., and Ward, P. A. (2005) Evaluation of endotoxin models for the study of sepsis, Shock, 24,Suppl. 1, 7–11.

    PubMed  CAS  Google Scholar 

  90. Koyanagi, M., Brandes, R. P., Haendeler, J., Zeiher, A. M., and Dimmeler, S. (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ. Res., 96, 1039–1041.

    PubMed  CAS  Google Scholar 

  91. Plotnikov, E. Y., Khryapenkova, T. G., Galkina, S. I., Sukhikh, G. T., and Zorov, D. B. (2010) Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture, Exp. Cell Res., 316, 2447–2455.

    PubMed  CAS  Google Scholar 

  92. Plotnikov, E. Y., Pulkova, N. V., Pevzner, I. B., Zorova, L. D., Silachev, D. N., Morosanova, M. A., Sukhikh, G. T., and Zorov, D. B. (2013) Inflammatory pre-conditioning of mesenchymal multipotent stromal cells improves their immunomodulatory potency in acute pyelonephritis in rats, Cytotherapy, 15, 679–689.

    PubMed  CAS  Google Scholar 

  93. Prockop, D. J. (2012) Mitochondria to the rescue, Nature Med., 18, 653–654.

    PubMed  CAS  Google Scholar 

  94. Spees, J. L., Olson, S. D., Whitney, M. J., and Prockop, D. J. (2006) Mitochondrial transfer between cells can rescue aerobic respiration, Proc. Natl. Acad. Sci. USA, 103, 1283–1288.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Csordas, A. (2006) Mitochondrial transfer between eukaryotic animal cells and its physiologic role, Rejuvenation Res., 9, 450–454.

    PubMed  CAS  Google Scholar 

  96. Mileshina, D., Ibrahim, N., Boesch, P., Lightowlers, R. N., Dietrich, A., and Weber-Lotfi, F. (2011) Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging, Mech. Ageing Dev., 132, 412–423.

    PubMed  CAS  Google Scholar 

  97. Zhang, Q., Itagaki, K., and Hauser, C. J. (2010) Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase, Shock, 34, 55–59.

    PubMed  Google Scholar 

  98. Clark, M. A., and Shay, J. W. (1982) Mitochondrial transformation of mammalian cells, Nature, 295, 605–607.

    PubMed  CAS  Google Scholar 

  99. Shimada, K., Crother, T. R., Karlin, J., Dagvadorj, J., Chiba, N., Chen, S., Ramanujan, V. K., Wolf, A. J., Vergnes, L., Ojcius, D. M., Rentsendorj, A., Vargas, M., Guerrero, C., Wang, Y., Fitzgerald, K. A., Underhill, D. M., Town, T., and Arditi, M. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, 36, 401–414.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature, 388, 394–397.

    PubMed  CAS  Google Scholar 

  102. Wright, S. D. (1999) Toll, a new piece in the puzzle of innate immunity, J. Exp. Med., 189, 605–609.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Krysko, D. V., Agostinis, P., Krysko, O., Garg, A. D., Bachert, C., Lambrecht, B. N., and Vandenabeele, P. (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation, Trends Immunol., 32, 157–164.

    PubMed  CAS  Google Scholar 

  104. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.

    PubMed  CAS  Google Scholar 

  105. Harman, D. (1992) Free radical theory of aging, Mutat. Res., 275, 257–266.

    PubMed  CAS  Google Scholar 

  106. Vina, J., Borras, C., Abdelaziz, K. M., Garcia-Valles, R., and Gomez-Cabrera, M. C. (2013) The free radical theory of aging revisited: the cell signaling disruption theory of aging, Antioxid. Redox Signal., 19, 779–787.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Barja, G. (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts, Antioxid. Redox Signal., 19, 1420–1445.

    PubMed  CAS  Google Scholar 

  108. Liochev, S. I. (2013) Reactive oxygen species and the free radical theory of aging, Free Radic. Biol. Med., 60, 1–4.

    PubMed  CAS  Google Scholar 

  109. Perez, V. I., Bokov, A., Van Remmen, H., Mele, J., Ran, Q., Ikeno, Y., and Richardson, A. (2009) Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta, 1790, 1005–1014.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Lapointe, J., and Hekimi, S. (2010) When a theory of aging ages badly, Cell Mol. Life Sci., 67, 1–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Speakman, J. R., and Selman, C. (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan, BioEssays: News Rev. Mol. Cell. Devel. Biol., 33, 255–259.

    Google Scholar 

  112. Gladyshev, V. N. (2014) The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal., 20, 727–731.

    PubMed  CAS  Google Scholar 

  113. Kirkwood, T. B., and Kowald, A. (2012) The free-radical theory of ageing — older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support, BioEssays: News Rev. Mol. Cell. Devel. Biol., 34, 692–700.

    CAS  Google Scholar 

  114. Heintz, C., and Mair, W. (2014) You are what you host: microbiome modulation of the aging process, Cell, 156, 408–411.

    PubMed  CAS  Google Scholar 

  115. Zhang, R., and Hou, A. (2013) Host-microbe interactions in Caenorhabditis elegans, ISRN Microbiol., DOI.10.1155/2013/356451.

    Google Scholar 

  116. Bakeeva, L. E., Chentsov Yu. S., and Skulachev, V. P. (1983) Intermitochondrial contacts in myocardiocytes, J. Mol. Cell Cardiol., 15, 413–420.

    PubMed  CAS  Google Scholar 

  117. Suzuki, T., and Mostofi, F. K. (1967) Intramitochondrial filamentous bodies in the thick limb of henle of the rat kidney, J. Cell Biol., 33, 605–623.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Sarnat, H. B., Flores-Sarnat, L., Casey, R., Scott, P., and Khan, A. (2012) Endothelial ultrastructural alterations of intramuscular capillaries in infantile mitochondrial cytopathies: “mitochondrial angiopathy”, Neuropathology, 32, 617–627.

    PubMed  Google Scholar 

  119. Hawkins, W. E., Howse, H. D., and Foster, C. A. (1980) Prismatic cristae and paracrystalline inclusions in mitochondria of myocardial cells of the oyster Crassostrea virginica Gmelin, Cell Tissue Res., 209, 87–94.

    PubMed  CAS  Google Scholar 

  120. Behbehani, A. W., Goebel, H., Osse, G., Gabriel, M., Langenbeck, U., Berden, J., Berger, R., and Schutgens, R. B. (1984) Mitochondrial myopathy with lactic acidosis and deficient activity of muscle succinate cytochrome-c-oxidoreductase, Eur. J. Pediatr., 143, 67–71.

    PubMed  CAS  Google Scholar 

  121. Buell, R., Wang, N. S., Seemayer, T. A., and Ahmed, M. N. (1976) Endobronchial plasma cell granuloma (xanthomatous pseudotumor); a light and electron microscopic study, Hum. Pathol., 7, 411–426.

    PubMed  CAS  Google Scholar 

  122. Blinzinger, K., Rewcastle, N. B., and Hager, H. (1965) Observations on prismatic-type mitochondria within astrocytes of the Syrian hamster brain, J. Cell Biol., 25, 293–303.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Vital, A., and Vital, C. (2012) Mitochondria and peripheral neuropathies, J. Neuropathol. Exp. Neurol., 71, 1036–1046.

    PubMed  CAS  Google Scholar 

  124. Van Ekeren, G. J., Stadhouders, A. M., Egberink, G. J., Sengers, R. C., Daniels, O., and Kubat, K. (1987) Hereditary mitochondrial hypertrophic cardiomyopathy with mitochondrial myopathy of skeletal muscle, congenital cataract and lactic acidosis, Virchows Arch. Pathol. Anat. Histopathol., 412, 47–52.

    Google Scholar 

  125. Andersson-Cedergren, E. (1959) Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fiber as revealed by three-dimensional reconstructions from serial sections, J. Ultrastruct. Res., 2,Suppl. 1, 5–191.

    Google Scholar 

  126. Mannella, C. A., Marko, M., and Buttle, K. (1997) Reconsidering mitochondrial structure: new views of an old organelle, TIBS, 22, 37–38.

    PubMed  CAS  Google Scholar 

  127. Daems, W. T., and Wisse, E. (1966) Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria, J. Ultrastruct. Res., 16, 123–140.

    PubMed  CAS  Google Scholar 

  128. Sun, C. N., White, H. J., and Thompson, B. W. (1975) Oncocytoma (mitochondrioma) of the parotid gland. An electron microscopical study, Arch. Pathol., 99, 208–214.

    PubMed  CAS  Google Scholar 

  129. Bannasch, P., Krech, R., and Zerban, H. (1978) Morphogenese und micromorphologie epithelialer nierentumoren bei nitrosomorpholin-vergifteten ratten. III. Oncocytentubuli und oncocytomas, Zeitschrift Krebsforschung Klin. Onkol. (Cancer Res. Clin. Oncol.), 92, 87–104.

    CAS  Google Scholar 

  130. Bonikos, D. S., Bensch, K. G., Watt, T., and Northway, W. H. (1977) Pulmonary oncocytes in prolonged hyperoxia, Exp. Mol. Pathol., 26, 92–102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Zorov.

Additional information

Original Russian Text © D. B. Zorov, E. Y. Plotnikov, D. N. Silachev, L. D. Zorova, I. B. Pevzner, S. D. Zorov, V. A. Babenko, S. S. Jankauskas, V. A. Popkov, P. S. Savina, 2014, published in Biokhimiya, 2014, Vol. 79, No. 10, pp. 1252–1268.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorov, D.B., Plotnikov, E.Y., Silachev, D.N. et al. Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry Moscow 79, 1017–1031 (2014). https://doi.org/10.1134/S0006297914100046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914100046

Key words

Navigation