Skip to main content
Log in

Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes

  • Accelerated Publication
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Acetylation of α-tubulin was studied in cultures of human hepatocytes under the influence of selective inhibitors of histone deacetylases HDAC6 and SIRT-2 — tubastatin A and 2-(3-phenethoxyphenylamino)benzamide, respectively. It was found that in hepatocyte cell line HepG2 acetylated α-tubulin is accumulated preferentially on inhibition of HDAC6 but not of SIRT-2. Under the same conditions, no acetylation of α-tubulin was observed in hepatocyte cell line Huh7. However, the inhibition of HDAC6 with tubastatin A led to hyperacetylation of α-tubulin and simultaneously to decrease in viral RNA concentration in hepatocyte cell line Huh7-luc/neo, which supports propagation of the full genome replicon of hepatitis C virus. The correlation between these two processes points to HDAC6 as a promising cellular target for therapy of hepatitis C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HCV:

hepatitis C virus

HDAC6:

Zn2+-dependent histone deacetylase 6

MT:

microtubules

SIRT-2:

NAD+-dependent histone deacetylase

αTAT1:

α-tubulin acetyltransferase of mammals

References

  1. Singh, B. N., Zhang, G., Hwa, Y. L., Li, J., Sean, C., Dowdy, S. C., and Jiang, S. W. (2010) Nonhistone protein acetylation as cancer therapy targets, Expert Rev. Anticancer Ther., 10, 935–954.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B., and Nachury, M. V. (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation, PNAS, 107, 21517–21522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Matsuyama, A., Shimazu, T., Sumida, Y., Saito, A., Yoshimatsu, Y., Seigneurin-Berny, D., Osada, H., Komatsu, Y., Nishino, N., Khochbin, S., Horinouchi, S., and Yoshida, M. (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation, EMBO J., 21, 6820–6831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., and Yao, T. P. (2002) HDAC6 is a microtubule-associated deacetylase, Nature, 417, 455–458.

    Article  CAS  PubMed  Google Scholar 

  5. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase, Mol. Cell, 11, 437–444.

    Article  CAS  PubMed  Google Scholar 

  6. Nahhas, F., Dryden, S. C., Abrams, J., and Tainsky, M. A. (2007) Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin, Mol. Cell. Biochem., 303, 221–230.

    Article  CAS  PubMed  Google Scholar 

  7. Janke, C., and Bulinski, J. C. (2011) Posttranslational regulation of the microtubule cytoskeleton: mechanisms and functions, Nat. Rev. Mol. Cell Biol., 12, 773–786.

    Article  CAS  PubMed  Google Scholar 

  8. Zilberman, Y., Ballestrem, C., Carramusa, L., Mazitschek, R., Khochbin S., and Bershadsky, A. (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6, J. Cell Sci., 122, 3531–3541.

    Article  CAS  PubMed  Google Scholar 

  9. Witt, O., Deubzer, H. E., Milde, T., and Oehme, I. (2009) HDAC family: what are the cancer relevant targets? Cancer Lett., 277, 8–21.

    Article  CAS  PubMed  Google Scholar 

  10. Simoes-Pires, C., Zwick, V., Nurisso, A., Schenker, E., Carrupt, P. A., and Cuendet, M. (2013) HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener., 8, 7–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Taes, I., Timmers, M., Hersmus, N., Bento-Abreu, A., Van Den Bosch, L., Van Damme, P., Auwerx, J., and Robberecht, W. (2013) Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS, Hum. Mol. Genet., 22, 1783–1790.

    Article  CAS  PubMed  Google Scholar 

  12. Roohvand, F., Maillard, P., Lavergne, J. P., Boulant, S., Walic, M., Andreo, U., Goueslain, L., Helle, F., Mallet, A., McLauchlan, J., and Budkowska, A. (2009) Initiation of hepatitis C virus infection requires the dynamic microtubule network, J. Biol. Chem., 284, 13778–13791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bost, A. G., Venable, D., Liu, L., and Heinz, B. A. (2003) Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system, J. Virol., 77, 4401–4408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lai, C. K., Jeng, K. S., Machida, K., and Lai, M. M. (2008) Association of hepatitis C virus replication complexes with microtubules and actin filaments is dependent on the interaction of NS3 and NS5A, J. Virol., 82, 8838–8848.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wolk, B., Buchele, B., Moradpour, D., and Rice, C. M. (2008) A dynamic view of hepatitis C virus replication complexes, J. Virol., 82, 10519–10531.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sato, A., Saito, Y., Sugiyama, K., Sakasegawa, N., Muramatsu, T., Fukuda, S., Yoneya, M., Kimura, M., Ebinuma, H., Hibi, T., Ikeda, M., Kato, N., and Saito, H. (2013) Suppressive effect of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) on hepatitis C virus replication, J. Cell. Biochem., 114, 1987–1996.

    Article  CAS  PubMed  Google Scholar 

  17. Kozlov, M. V., Kleymenova, A. A., Romanova, L. I., Konduktorov, K. A., Smirnova, O. A., Prasolov, V. S., and Kochetkov, S. N. (2013) Benzohydroxamic acids as potent and selective anti-HCV agents, Bioorg. Med. Chem. Lett., 23, 5936–5940.

    Article  CAS  PubMed  Google Scholar 

  18. Kozlov, M. V., Kleymenova, A. A., Konduktorov, K. A., and Kochetkov, S. N. (2013) A new synthesis of a highly selective inhibitor of histone deacetylase 6-N-hydroxy-4-(2-methyl-1,2,3,4-tetrahydropyrido[4,3-b]indol-5-ylmethyl)benzamide — tubastatin A, Bioorg. Khim., 39, 117–120.

    CAS  PubMed  Google Scholar 

  19. Suzuki, T., Khan, M. N., Sawada, H., Imai, E., Itoh, Y., Yamatsuta, K., Tokuda, N., Takeuchi, J., Seko, T., Nakagawa, H., and Miyata, N. (2012) Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors, J. Med. Chem., 55, 5760–5773.

    Article  CAS  PubMed  Google Scholar 

  20. Wagner, F. F., Olson, D. E., Gale, J. P., Kaya, T., Weiver, M., Aidoud, N., Thomas, M., Davoine, E. L., Lemercier, B. C., and Holson, E. B. (2013) Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif, J. Med. Chem., 56, 1772–1776.

    Article  CAS  PubMed  Google Scholar 

  21. Butler, K. V., Kalin, J., Brochier, C., Vistoli, G., Langley, B., and Kozikowski, A. P. (2010) Rational design and simple chemistry yield of a superior, neuroprotective HDAC6 inhibitor, tubastatin A, J. Am. Chem. Soc., 132, 10842–10846.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kovacs, J. J., Murphy, P., Gaillard, S., Zhao, X., Wu, J. T., Nicchitta, C. V., Yoshida, M., Toft, D. O., Pratt, W. B., and Yao, T. P. (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor, Mol. Cell., 18, 601–607.

    Article  CAS  PubMed  Google Scholar 

  23. Ujino, S., Yamaguchi, S., Shimotohno, K., and Takaku, H. (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3, J. Biol. Chem., 284, 6841–6846.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Parmigiani, R. B., Xu, W. S., Venta-Perez, G., Erdjument-Bromage, H., Yaneva, M., Tempst, P., and Marks, P. A. (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation, PNAS, 105, 9633–9638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Waris, G., Turkson, J., Hassanein, T., and Siddiqui, A. (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication, J. Virol., 79, 1569–1580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wyles, D. (2012) Beyond telaprevir and boceprevir: resistance and new agents for hepatitis C virus infection, Top Antivir. Med., 20, 139–145.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kozlov.

Additional information

Original Russian Text © M. V. Kozlov, A. A. Kleymenova, K. A. Konduktorov, A. Z. Malikova, S. N. Kochetkov, 2014, published in Biokhimiya, 2014, Vol. 79, No. 7, pp. 802–808.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM14-067, May 25, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, M.V., Kleymenova, A.A., Konduktorov, K.A. et al. Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes. Biochemistry Moscow 79, 637–642 (2014). https://doi.org/10.1134/S0006297914070050

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914070050

Key words

Navigation