Skip to main content
Log in

Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFU:

colony-forming units

DCF:

2′,7′-dichlo-rofluorescein

Dnm1:

dynamin 1

H2DCF·DA:

2′,7′-dichlorodihydrofluorescein diacetate

Hsps:

heat shock proteins

PCD:

programmed cell death

ROS:

reactive oxygen species

SDS:

sodium dodecyl sulfate

Yca1 (MCA1):

yeast caspase 1

References

  1. Alexandrov, V. J., and Kislyuk, I. M. (1994) Tsitologiya, 36, 5–59.

    Google Scholar 

  2. Verghese, J., Abrams, J., Wang, Y., and Morano, K. A. (2012) Microbiol. Mol. Biol. Rev., 76, 115–158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McAlister, L., and Finkelstein, D. B. (1980) Biochem. Biophys. Res. Commun., 93, 819–824.

    Article  CAS  PubMed  Google Scholar 

  4. Craig, E. A., and Jacobsen, K. (1984) Cell, 38, 841–849.

    Article  CAS  PubMed  Google Scholar 

  5. Piper, P. W. (1993) FEMS Microbiol. Rev., 11, 339–355.

    Article  CAS  PubMed  Google Scholar 

  6. Hall, B. G. (1983) J. Bacteriol., 156, 1363–1365.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Watson, K., Dunlop, G., and Cavicchioli, R. (1984) FEBS Lett., 172, 299–302.

    Article  CAS  PubMed  Google Scholar 

  8. Rikhvanov, E. G., Varakina, N. N., Rusaleva, T. M., Rachenko, E. I., Knorre, D. A., and Voinikov, V. K. (2005) Curr. Genet., 48, 44–59.

    Article  CAS  PubMed  Google Scholar 

  9. Rikhvanov, E. G., Romanova, N. V., and Chernoff, Y. O. (2007) Prion, 4, 217–222.

    Article  Google Scholar 

  10. Samali, A., Holmberg, C. I., Sistonen, L., and Orrenius, S. (1999) FEBS Lett., 461, 306–310.

    Article  CAS  PubMed  Google Scholar 

  11. Sukhanova, E. I., Rogov, A. G., Severin, F. F., and Zvyagilskaya, R. A. (2012) Biochemistry (Moscow), 77, 761–775.

    Article  CAS  Google Scholar 

  12. Chen, S. R., Dunigan, D. D., and Dickman, M. B. (2003) Free Radic. Biol. Med., 34, 1315–1325.

    Article  CAS  PubMed  Google Scholar 

  13. Fahrenkrog, B., Sauder, U., and Aebi, U. (2004) J. Cell Sci., 117, 115–126.

    Article  CAS  PubMed  Google Scholar 

  14. Teng, X., Cheng, W. C., Qi, B., Yu, T. X., Ramachandran, K., Boersma, M. D., Hattier, T., Lehmann, P. V., Pineda, F. J., and Hardwick, J. M. (2011) Cell Death Dis., 4, e188.

    Article  Google Scholar 

  15. Cebulski, J., Malouin, J., Pinches, N., Cascio, V., and Austriaco, N. (2011) PLoS One, 6, e20882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H., and Frohlich, K. U. (1999) J. Cell Biol., 145, 757–767.

    Article  CAS  PubMed  Google Scholar 

  17. Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C., and Corte-Real, M. (2001) Microbiology, 147, 2409–2415.

    CAS  PubMed  Google Scholar 

  18. Severin, F. F., and Hyman, A. A. (2002) Curr. Biol., 12, 233–235.

    Article  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.

    CAS  PubMed  Google Scholar 

  20. Timmons, T. M., and Dunbar, B. S. (1990) Methods Enzymol., 182, 679–701.

    Article  CAS  PubMed  Google Scholar 

  21. Fedoseeva, I. V., Pjatricas, D. V., Varakina, N. N., Rusaleva, T. M., Stepanov, A. V., Rikhvanov, E. G., Borovskii, G. B., and Voinikov, V. K. (2012) Biochemistry (Moscow), 77, 78–86.

    Article  CAS  Google Scholar 

  22. Mosser, D. D., Ho, S., and Glover, J. R. (2004) Biochemistry, 43, 8107–8715.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, R. E., Brunette, S., Puente, L. G., and Megeney, L. A. (2010) Proc. Natl. Acad. Sci. USA, 107, 13348–13353.

    Article  CAS  PubMed  Google Scholar 

  24. Tessarz, P., Schwarz, M., Mogk, A., and Bukau, B. (2009) Mol. Cell. Biol., 29, 3738–3745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Flower, T. R., Chesnokova, L. S., Froelich, C. A., Dixon, C., and Witt, S. N. (2005) J. Mol. Biol., 351, 1081–1100.

    Article  CAS  PubMed  Google Scholar 

  26. Magherini, F., Tani, C., Gamberi, T., Caselli, A., Bianchi, L., Bini, L., and Modesti, A. (2007) Proteomics, 7, 1434–1445.

    Article  CAS  PubMed  Google Scholar 

  27. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P. O. (2000) Mol. Biol. Cell, 11, 4241–4257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Rikhvanov, E. G., Varakina, N. N., Rusaleva, T. M., Rachenko, E. I., and Voinikov, V. K. (2003) Microbiology, 72, 423–428.

    Article  CAS  Google Scholar 

  29. Zakrzewska, A., van Eikenhorst, G., Burggraaff, J. E., Vis, D. J., Hoefsloot, H., Delneri, D., Oliver, S. G., Brul, S., and Smits, G. J. (2011) Mol. Biol. Cell, 22, 4435–4446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sokolov, S., Pozniakovsky, A., Bocharova, N., Knorre, D., and Severin, F. (2006) Biochim. Biophys. Acta, 1757, 660–666.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Fedoseeva.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 1, pp. 22–32.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM13-232, November 24, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikhvanov, E.G., Fedoseeva, I.V., Varakina, N.N. et al. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance. Biochemistry Moscow 79, 16–24 (2014). https://doi.org/10.1134/S0006297914010039

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914010039

Key words

Navigation