Skip to main content
Log in

Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as “phosphorylating” respiration coupled to ATP synthesis, “free” respiration not coupled to ATP synthesis, and “reserve” or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. “Phosphorylating” respiration was found to be reduced to 54% and “reserve” respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of “phosphorylating” respiration and high “reserve” respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high “reserve” respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MPTP:

mitochondrial permeability transition pores

MRC:

mitochondrial respiratory chains

PCD:

programmed cell death

RC:

respiratory control coefficients

RCADP :

control of respiration by the system of ATP synthesis from ADP and phosphate

RCPMF :

control of respiration by proton motive force

References

  1. Jose, C., Bellance, N., and Rossignol, R. (2011) Biochim. Biophys. Acta, 1807, 552–561.

    Article  PubMed  CAS  Google Scholar 

  2. Koppenol, W. H., Bounds, P. L., and Dang, C. V. (2011) Nat. Rev. Cancer, 11, 325–337.

    Article  PubMed  CAS  Google Scholar 

  3. Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2010) Mol. Aspects Med., 31, 60–74.

    Article  PubMed  CAS  Google Scholar 

  4. Moreno-Sanchez, R., Rodriguez-Enriquez, S., Marin-Hernandez, A., and Saavedra, E. (2007) FEBS J., 274, 1393–1418.

    Article  PubMed  CAS  Google Scholar 

  5. Ramsay, E. E., Hogg, P. J., and Dilda, P. J. (2011) Pharm. Res., 28, 2731–2744.

    Article  PubMed  CAS  Google Scholar 

  6. Warburg, O. (1956) Science, 123, 309–314.

    Article  PubMed  CAS  Google Scholar 

  7. Kroemer, G. (1999) Biochem. Soc. Symp., 66, 1–15.

    PubMed  CAS  Google Scholar 

  8. Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., and Bao, J. K. (2012) Cell Prolif., 45, 487–498.

    Article  PubMed  CAS  Google Scholar 

  9. Ferreira, C. G., Epping, M., Kruyt, F. A., and Giaccone, G. (2002) Clin. Cancer Res., 8, 2024–2034.

    PubMed  CAS  Google Scholar 

  10. Aaronson, S. A., and Todaro, G. E. (1968) J. Cell. Physiol., 72, 141–148.

    Article  PubMed  CAS  Google Scholar 

  11. Vasiliev, Yu. M., and Gelfand, I. M. (1981) Interaction of Normal and Neoplastic Cells with the Medium. Problems of Developmental Biology [in Russian], Nauka, Moscow.

    Google Scholar 

  12. Barkan, R. S., and Nikolsky, N. N. (1985) Tsitologiya, 27, 5–26.

    CAS  Google Scholar 

  13. Pinaev, G. P. (1988) Methods of Cell Cultivation [in Russian], Nauka, Leningrad.

    Google Scholar 

  14. Ashley, N., Garedev, A., Troppmair, J., Boushel, R., and Gneiger, E. (2005) Mitochondr. Physiol. Network, 10, 55–57.

    Google Scholar 

  15. Pesta, D., and Gnaiger, E. (2012) Mitochondr. Bioenerg.: Methods Mol. Biol., 810, 25–58.

    Article  CAS  Google Scholar 

  16. Regis, A., Vilchez, S., and Butel, J. (2004) Clin. Microbiol. Rev., 17, 495–508.

    Article  Google Scholar 

  17. Geoffrey, M. C. (2000) The Cell, 2nd Edn., A Molecular Approach, Chap. 15, Tumor Viruses, Boston University, Sunderland (MA): Sinauer Associates.

    Google Scholar 

  18. Moens, U., Van Ghelue, M., and Johannessen, M. (2007) Cell Mol. Life Sci., 64, 1656–1678.

    Article  PubMed  CAS  Google Scholar 

  19. Ahuja, D., Saenz-Robles, M. T., and Pipas, J. M. (2005) Oncogene, 24, 7729–7745.

    Article  PubMed  CAS  Google Scholar 

  20. Carrino, D., and Gershman, H. (1977) Proc. Natl. Acad. Sci. USA, 74, 3874–3878.

    Article  PubMed  CAS  Google Scholar 

  21. Elvin, P., and Evans, C. W. (1982) Eur. J. Cancer. Clin. Oncol., 18, 669–675.

    Article  PubMed  CAS  Google Scholar 

  22. Colby, C., and Romano, A. H. (1975) J. Cell Physiol., 85, 15–23.

    Article  PubMed  CAS  Google Scholar 

  23. Diamond, I., Legg, A., Schneider, J. A., and Rozengurt, E. (1978) J. Biol. Chem., 253, 866–871.

    PubMed  CAS  Google Scholar 

  24. Yang, D., Wang, M. T., Tang, Y., Chen, Y., Jiang, H., Jones, T. T., Rao, K., Brewer, G. J., Singh, K. K., and Nie, D. (2010) Cancer Biol. Ther., 9, 122–133.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez-Enriquez, S., Juarez, O., Rodriguez-Zavala, J. S., and Moreno-Sanchez, R. (2001) Eur. J. Biochem., 268, 2512–2519.

    Article  PubMed  CAS  Google Scholar 

  26. Willers, I. M., and Cuezva, J. M. (2011) Biochim. Biophys. Acta, 1807, 543–551.

    Article  PubMed  CAS  Google Scholar 

  27. Joan, P., Schwartz, J. V., Passonneau, G., Johnson, S., and Pastan, I. (1974) J. Biol. Chem., 249, 4138–4143.

    Google Scholar 

  28. Evtodienko, Y. V., Teplova, V. V., Azarashvily, T. S., Kudin, A., Prusakova, O., Virtanen, I., and Saris, N. E. (1999) Mol. Cell Biochem., 194, 251–256.

    Article  PubMed  CAS  Google Scholar 

  29. Ly, J. D., Grubb, D. R., and Lawen, A. (2003) Apoptosis, 8, 115–128.

    Article  PubMed  CAS  Google Scholar 

  30. Lemasters, J. J., Qian, T., He, L., Kim, J. S., Elmore, S. P., Cascio, W. E., and Brenner, D. A. (2002) Antioxid. Redox Signal., 4, 769–781.

    Article  PubMed  CAS  Google Scholar 

  31. Norberg, E., Gogvadze, V., Ott, M., Horn, M., Uhlen, P., Orrenius, S., and Zhivotovsky, B. (2008) Cell Death Differ., 15, 1857–1864.

    Article  PubMed  CAS  Google Scholar 

  32. Brand, M. D., and Nicholls, D. G. (2011) Biochem. J., 435, 297–312.

    Article  PubMed  CAS  Google Scholar 

  33. Choi, S. W., Gerencser, A. A., and Nicholls, D. G. (2009) J. Neurochem., 109, 1179–1191.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, G., Wang, F., Trachootham, D., and Huang, P. (2010) Mitochondrion, 10, 614–625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Leznev.

Additional information

Original Russian Text © E. I. Leznev, I. I. Popova, V. P. Lavrovskaja, Y. V. Evtodienko, 2013, published in Biokhimiya, 2013, Vol. 78, No. 8, pp. 1151–1157.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leznev, E.I., Popova, I.I., Lavrovskaja, V.P. et al. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells. Biochemistry Moscow 78, 904–908 (2013). https://doi.org/10.1134/S0006297913080063

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297913080063

Key words

Navigation