Skip to main content
Log in

Glucuronoarabinoxylan extracted by treatment with endoxylanase from different zones of growing maize root

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Glucuronoarabinoxylan is a key tethering glucan in the primary cell wall of cereals. Glucuronoarabinoxylan was extracted from different zones of maize (Zea mays L.) roots using endoxylanase that specifically cleaves β-(1,4)-glycoside bond between two consequent unsubstituted xylose residues. Changes in polysaccharide structure during elongation growth were characterized. Glucuronoarabinoxylan extractable after the endoxylanase treatment consisted of high molecular weight (30–400 kDa) and low molecular weight (<10 kDa) fractions. The presence of high molecular weight derivatives indicated that part of the natural glucuronoarabinoxylan is not digestible by the endoxylanase. This could be due to the revealed peculiar structural features, such as high level of substitution of xylose, absence of unsubstituted xylose residues existing in sequence, and significant degree of acetylation. In maize root meristem the indigestible fraction was 98% of the total extracted glucuronoarabinoxylan. This portion decreases to 47% during elongation. Also, the average molecular weight of indigestible glucuronoarabinoxylan reduced twofold. These changes in the ratio of glucuronoarabinoxylan fragments with different structure during root cell growth could reflect a transition of polysaccharide from its separating (highly substituted indigestible glucuronoarabinoxylan) form to that binding to cellulose microfibrils or other glucuronoarabinoxylan molecules and, hence, retarding growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geitmann, A., and Ortega, J. K. E. (2009) Trends Plant Sci., 14, 467–478.

    Article  PubMed  CAS  Google Scholar 

  2. Carpita, N. C. (1996) Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, 445–476.

    Article  CAS  Google Scholar 

  3. Ebringerová, A., and Heinze, T. (2000) Macromol. Rapid Comm., 21, 542–556.

    Article  Google Scholar 

  4. Faik, A. (2010) Plant Physiol., 153, 396–402.

    Article  PubMed  CAS  Google Scholar 

  5. Wende, G., and Fry, S. C. (1997) Phytochemistry, 44, 1019–1030.

    Article  CAS  Google Scholar 

  6. Schooneveld-Bergmans, M., Beldman, G., and Voragen, A. (1999) J. Cereal Sci., 29, 63–75.

    Article  CAS  Google Scholar 

  7. Huisman, M. M. H., Schols, H. A., and Voragen, A. (2000) Carbohydr. Polym., 43, 299–307.

    Article  Google Scholar 

  8. Carpita, N. C., Defernez, M., Findlay, K., Wells, B., Shoue, D. A., Catchpole, G., Wilson, R. H., and McCann, M. C. (2001) Plant Physiol., 127, 551–565.

    Article  PubMed  CAS  Google Scholar 

  9. Obel, N., Porchia, A. C., and Scheller, H. V. (2002) Phytochemistry, 60, 603–610.

    Article  PubMed  CAS  Google Scholar 

  10. Gibeaut, D. M., Pauly, M., Bacic, A., and Fincher, G. B. (2005) Planta, 221, 729–738.

    Article  PubMed  CAS  Google Scholar 

  11. Ivanov, V. B. (2011) Cellular Mechanisms of Plant Growth [in Russian], Nauka, Moscow.

  12. Kozlova, L. V., Snegireva, A. V., and Gorshkova, T. A. (2012) Rus. J. Plant Physiol., 59, 376–385.

    Google Scholar 

  13. Kato, Y., and Nevins, D. (1984) Plant Physiol., 75, 759–765.

    Article  PubMed  CAS  Google Scholar 

  14. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956) Anal. Chem., 28, 350–356.

    Article  CAS  Google Scholar 

  15. Talmadge, K. W., Keegstra, K., Bauer, W. D., and Albersheim, P. (1973) Plant Physiol., 51, 158–173.

    Article  PubMed  CAS  Google Scholar 

  16. Bengtsson, S., and Åman, P. (1990) Carbohydr. Polym., 12, 267–277.

    Article  CAS  Google Scholar 

  17. Ebringerová, A., Hromádková, Z., Petráková, E., and Hricovini, M. (1990) Carbohydr. Res., 198, 57–66.

    Article  PubMed  Google Scholar 

  18. Izydorczyk, M. S., and Biliaderis, C. G. (1992) Carbohydr. Polym., 17, 237–247.

    Article  CAS  Google Scholar 

  19. Westerlund, E., Andersson, R., and Åman, P. (1993) Carbohydr. Polym., 20, 115–123.

    Article  CAS  Google Scholar 

  20. Ebringerová, A., Hromádková, Z., and Berth, G. (1994) Carbohydr. Res., 264, 97–109.

    Article  Google Scholar 

  21. Pauly, M., Qin, Q., Greene, H., Albersheim, P., Darvill, A., and York, W. S. (2001) Planta, 212, 842–850.

    Article  PubMed  CAS  Google Scholar 

  22. Pauly, M., Albersheim, P., Darvill, A., and York, W. S. (1999) Plant J., 20, 629–639.

    Article  PubMed  CAS  Google Scholar 

  23. Bhat, M. K., and Hazlewood, G. P. (2003) in Enzymes in Farm Animal Nutrition (Bedford, M. R., and Partige, G. G., eds.) CABI Publishing, Cambridge, USA, pp. 11–61.

    Google Scholar 

  24. Thompson, S. D. (2005) J. Exp. Bot., 56, 2275–2285.

    Article  PubMed  CAS  Google Scholar 

  25. Sternemalm, E., Höije, A., and Gatenholm, P. (2008) Carbohydr. Res., 343, 753–757.

    Article  PubMed  CAS  Google Scholar 

  26. Köhnke, T., Pujolras, C., Roubroeks, J. P., and Gatenholm, P. (2008) Cellulose, 15, 537–546.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gorshkova.

Additional information

Original Russian Text © L. V. Kozlova, P. V. Mikshina, T. A. Gorshkova, 2012, published in Biokhimiya, 2012, Vol. 77, No. 4, pp. 501–511.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlova, L.V., Mikshina, P.V. & Gorshkova, T.A. Glucuronoarabinoxylan extracted by treatment with endoxylanase from different zones of growing maize root. Biochemistry Moscow 77, 395–403 (2012). https://doi.org/10.1134/S0006297912040116

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297912040116

Key words

Navigation