Skip to main content
Log in

Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We report the acid tolerance response and changes in the level of protein expression of probiotic Lactobacillus reuteri subjected to transient (1.5 h) acid stress at pH 3.0. Sixteen acid-responsive proteins were identified by peptide mass fingerprinting including members of five broad functional categories: metabolism, transcription/translation, DNA replication/repair, transport and binding proteins, and pH homeostasis and stress responses. This work can provide some new and relevant information on the inducible mechanisms underlying the capacity of probiotic L. reuteri to tolerate acid stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEF:

isoelectric focusing

IPG:

immobilized pH gradient

MALDI-TOF-MS:

matrix-assisted laser desorption/ionization time of flight mass spectrometry

MRS:

DeMan-Rogosa-Sharpe medium

PMF:

proton motive force

References

  1. Rolfe, R. D. (2000) J. Nutr., 130, 396S–402S.

    CAS  PubMed  Google Scholar 

  2. Sanders, M. E. (2000) J. Nutr., 130, 384S–390S.

    CAS  PubMed  Google Scholar 

  3. Fuller, R. J. (1989) Appl. Bacteriol., 66, 365–378.

    CAS  Google Scholar 

  4. Shornikova, A. V., Casas, I. A., Isolauri, E., Mykkanen, H., and Vesikari, T. (1997) J. Pediatr. Gastroenterol. Nutr., 24, 399–404.

    Article  CAS  PubMed  Google Scholar 

  5. Weizman, Z., Asli, G., and Alsheikh, A. (2005) Pediatrics, 115, 5–9.

    PubMed  Google Scholar 

  6. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W., Stiekema, W., Lankhorst, R. M., Bron, P. A., Hoffer, S. M., Groot, M. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., and Siezen, R. J. (2003) Proc. Natl. Acad. Sci. USA, 100, 1990–1995.

    Article  CAS  PubMed  Google Scholar 

  7. Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T., Callanan, M., Lick, S., Hamrick, A., Cano, R., and Klaenhammer, T. R. (2005) Proc. Natl. Acad. Sci. USA, 102, 3906–3912.

    Article  CAS  PubMed  Google Scholar 

  8. Arevalo-Ferro, C., Hentzer, M., Reil, G., Gorg, A., Kielleberg, S., Givskov, M., Riedel, K., and Eberl, L. (2003) Environ. Microbiol., 5, 1350–1369.

    Article  CAS  PubMed  Google Scholar 

  9. Rosen, R., Sacher, A., Schechter, N., Bechter, D., Buttner, K., Biran, D., Hecker, M., and Ron, E. Z. (2004) Proteomics, 4, 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  10. Park, M. R., Lee, E. G., Kim, Y. H., Jung, T. S., Shin, Y. S., Shin, G. W., Cha, H. G., and Kim, G. S. (2003) J. Vet. Sci., 4, 143–149.

    PubMed  Google Scholar 

  11. Peick, B., Graumann, P., Schmid, R., Marahiel, M., and Werner, D. (1999) Soil Biol. Biochem., 31, 189–194.

    Article  CAS  Google Scholar 

  12. Rabus, R., Bruchert, V., Amann, J., and Konneke, M. (2002) FEMS Microbiol. Ecol., 42, 409–417.

    Article  CAS  PubMed  Google Scholar 

  13. Lorca, G. L., de Valdez, F. G., and Ljungth, A. (2002) J. Mol. Microbiol. Biotechnol., 4, 525–532.

    CAS  PubMed  Google Scholar 

  14. De Angelis, M., Bini, L., Pallini, V., Cocconcelli, P. S., and Gobbetti, M. (2001) Microbiology, 147, 1863–1873.

    PubMed  Google Scholar 

  15. Lim, E. M., Ehrlich, S. D., and Maguin, E. (2000) Electrophoresis, 21, 2557–2561.

    Article  CAS  PubMed  Google Scholar 

  16. Schevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Anal. Chem., 68, 850–858.

    Article  Google Scholar 

  17. Savijoki, K., Suokko, A., Palva, A., Valmu, L., Kalkkinen, N., and Varmanen, P. (2005) FEMS Microbiol. Lett., 248, 207–215.

    Article  CAS  PubMed  Google Scholar 

  18. Shabala, L., McMeekin, T., Bjorn Buddle, B., and Siegumfeldt, H. (2006) J. Food Microbiol., 110, 1–7.

    Article  CAS  Google Scholar 

  19. Koebmann, B. J., Andersen, H. W., Solem, C., and Jensen, P. R. (2002) Antonie van Leeuwenhoek, 82, 237–248.

    Article  CAS  PubMed  Google Scholar 

  20. Ye, J. J., Neal, J. W., Cui, X., Reizer, J., and Saier, M. H., Jr. (1994) J. Bacteriol., 176, 3484–3492.

    CAS  PubMed  Google Scholar 

  21. Sakamoto, K., and Konings, W. N. (2003) Int. J. Food Microbiol., 89, 105–124.

    Article  CAS  PubMed  Google Scholar 

  22. Wilkins, J. C., Homer, K. A., and Beighton, D. (2002) Appl. Environ. Microbiol., 68, 2382–2390.

    Article  CAS  PubMed  Google Scholar 

  23. Budin-Verneuil, A., Pichereau, V., Auffray, Y., Ehrlich Dusko, S., and Maguin, E. (2005) Proteomics, 5, 4794–4807.

    Article  CAS  PubMed  Google Scholar 

  24. Lithgow, J. K., Hayhurst, E. J., Cohen, G., Aharonowitz, Y., and Foster, S. J. (2004) J. Bacteriol., 186, 1579–1590.

    Article  CAS  PubMed  Google Scholar 

  25. Len, A. C., Harty, D. W., and Jacques, N. A. (2004) Microbiology, 150, 1339–1351.

    Article  CAS  PubMed  Google Scholar 

  26. Wall, T., Bath, K., Britton, R. A., Jonsson, H., Versalovic, J., and Roos, S. (2007) Appl. Environ. Microbiol., 73, 3924–3935.

    Article  CAS  PubMed  Google Scholar 

  27. Fuller, R. S., Funnell, B. E., and Kornberg, A. (1984) Cell, 38, 889–900.

    Article  CAS  PubMed  Google Scholar 

  28. Messer, W., and Weigel, C. (1997) Mol. Microbiol., 24, 1–6.

    Article  CAS  PubMed  Google Scholar 

  29. Van Houten, B. (1990) Microbiol. Rev., 54, 18–51.

    PubMed  Google Scholar 

  30. Sancar, A. (1996) Annu. Rev. Biochem., 65, 43–81.

    Article  CAS  PubMed  Google Scholar 

  31. Goosen, N., Moolenaar, C. F., Visse, R., and van de Putte, P. (1998) in DNA Repair. Nucleic Acids and Molecular Biology (Eckstein, F., and Lilley, D. M. G., eds.) Springer Verlag, Berlin, pp. 101–123.

    Google Scholar 

  32. Van Houten, B., Croteau, D. L., Dellavecchia, M. J., Wang, H., and Kisker, C. (2005) Mutant Res., 577, 92–117.

    Google Scholar 

  33. Schneider, E., and Hunke, S. (1988) FEMS Microbiol. Rev., 22, 1–20.

    Article  Google Scholar 

  34. Konings, W. N., Lolkema, J. S., Bolhuis, H., van Veen, H. W., Poolman, B., and Driessen, A. J. (1997) Antonie van Leeuwenhoek, 71, 117–128.

    Article  CAS  PubMed  Google Scholar 

  35. De Nobel, H., Lawrie, L., Brul, S., Klis, F., Davis, M., Alloush, H., and Coote, P. (2001) Yeast, 18, 1413–1428.

    Article  PubMed  Google Scholar 

  36. Lewis, K. (1994) Biochem. Sci., 19, 119–123.

    Article  CAS  Google Scholar 

  37. Konings, W. N., Verena, S., Koning, S., and Driessen, A. J. M. (2002) Antonie van Leeuwenhoek, 81, 61–72.

    Article  CAS  PubMed  Google Scholar 

  38. Rollan, G., Lorca, G. L., and de Valdez, F. G. (2003) Food Microbiol., 20, 313–319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KiBeom Lee.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 4, pp. 558–564.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Pi, K. Effect of transient acid stress on the proteome of intestinal probiotic Lactobacillus reuteri . Biochemistry Moscow 75, 460–465 (2010). https://doi.org/10.1134/S0006297910040097

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910040097

Key words

Navigation