Skip to main content
Log in

Selenoprotein W depletion in vitro might indicate that its main function is not as an antioxidative enzyme

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Examination of the antioxidative homeostasis in skeletal muscle cells in the presence or absence of selenoprotein W (SelW) is necessary to understand the importance of SelW in the antioxidative system. Depletion of SelW by RNA interference was achieved by introducing a synthetic small interfering RNA into the mouse skeletal muscle cell line C2C12 (C3H). Transfectant screening was performed by real-time reverse transcription-PCR, Western blotting, flow cytometry, fluorescence staining, cell viability, and glutathione assays. SelW expression and mRNA levels were downregulated by 62.1 and 72.4%, respectively. In addition, acute cytotoxicity and an apoptosis rate of ∼36% in SelW-depleted cells demonstrated that RNA interference was successful. As compared with non-SelW-depleted cells, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and total antioxidative capability and glutathione level increased by 47.6, 103.0, 31.0, 205.6, and 30.0%, respectively (P < 0.05). Thus, SelW is important for the antioxidative system of muscle cells. Depletion of SelW, however, could be compensated by other intracellular antioxidative enzymes because oxidative stress was not the causative factor for apoptosis in SelW-depleted cells. Thus, the main function of SelW in muscle cells is not in the antioxidative system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

FITC:

fluorescein isothiocyanate

GPx:

glutathione peroxidase

GSH:

glutathione

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PI:

propidium iodide

SelW:

selenoprotein W

siRNA:

small interfering RNA

SOD:

superoxide dismutases

T-AOC:

total antioxidative capability

WST-1:

2-(4-iodophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt

References

  1. Pappas, A. C., Zoidis, E., Surai, P. F., and Zervas, G. (2008) Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 151, 361–372.

    Article  CAS  PubMed  Google Scholar 

  2. Vendeland, S. C., Beilstein, M. A., Chen, C. L., Jensen, O. N., Barofsky, E., and Whanger, P. D. (1993) J. Biol. Chem., 268, 17103–17107.

    CAS  PubMed  Google Scholar 

  3. Ream, L. W., Vorachek, W. R., and Whanger, P. D. (2003) in Selenium: Its Molecular Biology and Role in Human Health (Hatfield, D. L., ed.) Kluwer Academic Publishers, London, pp. 141–145.

    Google Scholar 

  4. Yeh, J. Y., Beilstein, M. A., Andrews, J. S., and Whanger, P. D. (1995) FASEB J., 9, 392–396.

    CAS  PubMed  Google Scholar 

  5. Whanger, P. D. (2000) Cell Mol. Life Sci., 57, 1846–1852.

    Article  CAS  PubMed  Google Scholar 

  6. Gu, Q. P., Sun, Y., Ream, L. W., and Whanger, P. D. (2000) Mol. Cell Biochem., 204, 49–56.

    Article  CAS  PubMed  Google Scholar 

  7. Pagmantidis, V., Bermano, G., Villette, S., Broom, I., Arthur, J., and Hesketh, J. (2005) FEBS Lett., 579, 792–796.

    Article  CAS  PubMed  Google Scholar 

  8. Papp, L. V., Lu, J., Holmgren, A., and Khanna, K. K. (2007) Antioxid. Redox. Signal., 9, 775–806.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, J., and Holmgren, A. (2009) J. Biol. Chem., 284, 723–727.

    Article  CAS  PubMed  Google Scholar 

  10. Beilstein, M. A., Vendeland, S. C., Barofsky, E., Jensen, O. N., and Whanger, P. D. (1996) J. Inorg. Biochem., 61, 117–124.

    Article  CAS  PubMed  Google Scholar 

  11. Gu, Q. P., Beilstein, M. A., Vendeland, S. C., Lugade, A., Ream, W., and Whanger, P. D. (1997) Gene, 193, 187–196.

    Article  CAS  PubMed  Google Scholar 

  12. Whanger, P. D., Vendeland, S. C., Gu, Q. P., Beilstein, M. A., and Ream, L. W. (1997) Biomed. Environ. Sci., 10, 190–197.

    CAS  PubMed  Google Scholar 

  13. Jeong, D., Kim, T. S., Chung, Y. W., Lee, B. J., and Kim, I. Y. (2002) FEBS Lett., 517, 225–228.

    Article  CAS  PubMed  Google Scholar 

  14. Bauman, A. T., Malencik, D. A., Barofsky, D. F., Barofsky, E., Anderson, S. R., and Whanger, P. D. (2004) Biochem. Biophys. Res. Commun., 313, 308–313.

    Article  CAS  PubMed  Google Scholar 

  15. Loflin, J., Lopez, N., Whanger, P. D., and Kioussi, C. (2006) J. Inorg. Biochem., 100, 1679–1684.

    Article  CAS  PubMed  Google Scholar 

  16. Aachmann, F. L., Fomenko, D. E., Soragni, A., Gladyshev, V. N., and Dikiy, A. (2007) J. Biol. Chem., 282, 37036–37044.

    Article  CAS  PubMed  Google Scholar 

  17. Dikiy, A., Novoselov, S. V., Fomenko, D. E., Sengupta, A., Carlson, B. A., Cerny, R. L., Ginalski, K., Grishin, N. V., Hatfield, D. L., and Gladyshev, V. N. (2007) Biochemistry, 46, 6871–6882.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Y., Gu, Q. P., and Whanger, P. D. (2001) J. Inorg. Biochem., 84, 151–156.

    Article  CAS  PubMed  Google Scholar 

  19. Yeh, J. Y., Ou, B. R., Forsberg, N. E., and Whanger, P. D. (1997) BioMetals, 10, 11–22.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, J. H., Wang, Y., Cao, Y. B., Gao, P. H., Jia, X. M., Ma, Z. P., Xu, Y. G., Dai, B. D., and Jiang, Y. Y. (2007) Biochem. Biophys. Res. Commun., 359, 163–167.

    Article  CAS  PubMed  Google Scholar 

  21. Linke, K., and Jakob, U. (2003) Antioxid. Redox. Signal., 5, 425–434.

    Article  CAS  PubMed  Google Scholar 

  22. Ghezzi, P. (2005) Free Radic. Res., 39, 573–580.

    Article  CAS  PubMed  Google Scholar 

  23. Barzilai, A., Rotman, G., and Shiloh, Y. (2002) DNA Repair (Amst)., 1, 3–25.

    Article  CAS  Google Scholar 

  24. Gille, G., and Sigler, K. (1995) Folia Microbiol., 40, 131–152.

    Article  CAS  Google Scholar 

  25. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997) Proc. Natl. Acad. Sci. USA, 94, 3633–3638.

    Article  CAS  PubMed  Google Scholar 

  26. Karimpour, S., Lou, J., Lin, L. L., Rene, L. M., Ma, X., and Karra, S. (2002) Oncogene, 21, 6317–6327.

    Article  CAS  PubMed  Google Scholar 

  27. Hattori, H., Imai, H., Furuhama, K., Sato, O., and Nakagawa, Y. (2005) Biochem. Biophys. Res. Commun., 337, 464–473.

    Article  CAS  PubMed  Google Scholar 

  28. Nordberg, J., and Arner, E. S. J. (2001) Free Radic. Biol. Med., 31, 1287–1312.

    Article  CAS  PubMed  Google Scholar 

  29. Xia, L., Nordman, T., Olsson, J. M., Damdimopoulos, A., Bjorkhem-Bergman, L., Nalvarte, I., Eriksson, L. C., Arner, E. S. J., Spyrou, G., and Bjorstedt, M. (2003) J. Biol. Chem., 278, 2141–2146.

    Article  CAS  PubMed  Google Scholar 

  30. Yusof, Y. A. M., Ahmad, N., Das, S., Sulaiman, S., and Murad, N. A. (2009) African J. Tradition., Compliment. Altern. Med., 6, 87–93.

    CAS  Google Scholar 

  31. Lescure, A., Rederstorff, M., Krol, A., Guicheney, P., and Allamand, V. (2009) Biochim. Biophys. Acta, 1790, 1569–1574.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Ping Yang.

Additional information

Published in Russian in Biokhimiya, 2010, Vol. 75, No. 2, pp. 247–255.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM09-197, January 17, 2010.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XL., Yang, CP., Xu, K. et al. Selenoprotein W depletion in vitro might indicate that its main function is not as an antioxidative enzyme. Biochemistry Moscow 75, 201–207 (2010). https://doi.org/10.1134/S0006297910020100

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297910020100

Key words

Navigation