Skip to main content
Log in

Chaperone Skp from Yersinia pseudotuberculosis exhibits immunoglobulin G binding ability

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

A low-molecular-weight cationic protein that can bind human and rabbit immunoglobulins G has been isolated from Yersinia pseudotuberculosis cells. This immunoglobulin binding protein (IBP) interacts with IgG Fc-fragment, the association constant of the resulting complex being 3.1 μM−1. MALDI-TOF mass spectrometry analysis of IBP revealed its molecular mass of 16.1 kDa, and capillary isoelectrofocusing analysis showed pI value of 9.2. N-Terminal sequence determination by Edman degradation revealed the sequence of the 15 terminal amino acid residues (ADKIAIVNVSSIFQ). Tryptic hydrolysate of IBP was subjected to MALDI-TOF mass spectrometry for proteolytic peptide profiling. Based on the peptide fingerprint, molecular mass, pI, and N-terminal sequence and using bioinformatic resources, IBP was identified as Y. pseudotuberculosis periplasmic chaperone Skp. Using the method of comparative modeling a spatial model of Skp has been built. This model was then used for modeling of Skp complexes with human IgG1 Fc-fragment by means of molecular docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IBP:

immunoglobulin binding protein

Skp:

seventeen kilodalton protein

References

  1. Thome, B., Hoffschulte, H., Schiltz, E., and Muller, M. (1990) FEBS Lett., 269, 113–116.

    Article  PubMed  CAS  Google Scholar 

  2. Thome, B., and Muller, M. (1991) Mol. Microbiol., 5, 2815–2821.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, R., and Henning, U. (1996) Mol. Microbiol., 19, 1287–1294.

    Article  PubMed  CAS  Google Scholar 

  4. De Cock, H., Schafer, U., Potgeter, M., Demel, R., Muller, M., and Tommassen, J. (1999) Eur. J. Biochem., 259, 96–103.

    Article  PubMed  Google Scholar 

  5. Schafer, U., Beck, K., and Muller, M. (1999) J. Biol. Chem., 274, 24567–24574.

    Article  PubMed  CAS  Google Scholar 

  6. Qu, J., Mayer, C., Behrens, S., Holst, O., and Kleinschmidt, J. (2007) J. Mol. Biol., 374, 91–105.

    Article  PubMed  CAS  Google Scholar 

  7. Schlapschy, M., Dommel, M., Hadian, K., Fogarasi, M., Korndorfer, I., and Skerra, A. (2004) Biol. Chem., 385, 137–143.

    Article  PubMed  CAS  Google Scholar 

  8. Bulieris, P., Behrens, S., Holst, O., and Kleinschmidt, J. H. (2003) J. Biol. Chem., 278, 9092–9099.

    Article  PubMed  CAS  Google Scholar 

  9. Geyer, R., Galanos, C., Westphal, O., and Golecki, J. (1979) Eur. J. Biochem., 98, 27–38.

    Article  PubMed  CAS  Google Scholar 

  10. Holck, A., and Kleppe, K. (1988) Gene, 67, 117–124.

    Article  PubMed  CAS  Google Scholar 

  11. Holck, A., Lossius, I., Aasland, R., and Kleppe, K. (1987) Biochim. Biophys. Acta, 914, 49–54.

    PubMed  CAS  Google Scholar 

  12. Holck, A., Lossius, I., Aasland, R., Haarr, L., and Kleppe, K. (1987) Biochim. Biophys. Acta, 908, 188–199.

    PubMed  CAS  Google Scholar 

  13. Koski, P., Rhen, M., Kantele, J., and Vaara, M. (1989) J. Biol. Chem., 264, 18973–18980.

    PubMed  CAS  Google Scholar 

  14. Koski, P., Hirvas, L., and Vaara, M. (1990) Gene, 88, 117–120.

    Article  PubMed  CAS  Google Scholar 

  15. Chain, P. S. G., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M., Land, M. L., Motin, V. L., Brubaker, R. R., Fowler, J., Hinnebusch, J., Marceau, M., Medigue, C., Simonet, M., Chenal-Francisque, V., Souza, B., Dacheux, D., Elliott, J. M., Derbise, A., Hauser, L. J., and Garcia, E. (2004) Proc. Natl. Acad. Sci. USA, 101, 13826–13831.

    Article  PubMed  CAS  Google Scholar 

  16. Vuorio, R., Hirvas, L., Raybourne, R. B., Yu, D. T. Y., and Vaara, M. (1991) Biochim. Biophys. Acta, 1129, 124–126.

    PubMed  CAS  Google Scholar 

  17. Shrestha, A., Shi, L., Tanase, S., Tsukamoto, M., Nishino, N., Tokita, K., and Yamamoto, T. (2004) Am. J. Pathol., 164, 763–772.

    PubMed  CAS  Google Scholar 

  18. Ezepchuk, Yu. V. (1977) in Biomolecular Bases of Bacterial Pathogenicity [in Russian], Nauka, Moscow, pp. 56–63.

    Google Scholar 

  19. Widders, P. R. (1991) in Bacterial Immunoglobulin-Binding Proteins: Microbiology, Chemistry, and Biology (Boyle, M. D. P., ed.) Academic Press Inc., San Diego, pp. 375–396.

    Google Scholar 

  20. Sidorin, E. V., Kim, N. Yu., Leichenko, E. V., Anastyuk, S. D., Dmitrenok, P. S., Nabereznykh, G. A., and Solov’eva, T. F. (2006) Biochemistry (Moscow), 71, 1278–1283.

    Article  CAS  Google Scholar 

  21. Nabereznykh, G. A., Sidorin, E. V., Lapshina, L. A., Reunov, A. V., and Solov’eva, T. F. (2006) Biochemistry (Moscow), 71, 1284–1288.

    Article  Google Scholar 

  22. Ovodov, Yu. S., Gorshkova, R. P., and Tomshich, S. V. (1971) Imunochemistry, 8, 1071–1079.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970) Nature, 2, 680–685.

    Article  Google Scholar 

  24. Gasparov, V. C., and Degtyar’, V. G. (1994) Biochemistry (Moscow), 59, 563–572.

    Google Scholar 

  25. Pinchuk, L. M. (1971) Zh. Mikrobiol. Epidemiol. Immunobiol., 7, 26.

    Google Scholar 

  26. Kilar, F., Vegvari, A., and Mod, A. (1998) J. Chromatogr., 813, 349–360.

    Article  CAS  Google Scholar 

  27. Rappsilber, J., Ishihama, Y., and Mann, M. (2003) Anal. Chem., 75, 663–670.

    Article  PubMed  CAS  Google Scholar 

  28. Mikhailov, A. T., and Simirskii, V. N. (1991) in Immunochemical Analytical Methods in Developmental Biology [in Russian], Nauka, Moscow, pp. 155–192.

    Google Scholar 

  29. Labbe, S., and Grenier, D. (1995) Infect. Immun., 63, 2785–2789.

    PubMed  CAS  Google Scholar 

  30. Catty, D., and Raykundalia, C. (1991) in Antibodies. Methods (Catty, D., ed.) [Russian translation], Mir, Moscow, pp. 180–181.

    Google Scholar 

  31. Egorov, A. M., Osipov, A. P., Dzantiev, B. B., and Gavrilova, E. M. (1991) in Theory and Practice of Immunoenzyme Analysis [in Russian], Vysshaya Shkola, Moscow, pp. 182–183.

    Google Scholar 

  32. Bobrovnik, S. A. (2004) Ukr. Biokhim. Zh., 76, 5–28.

    PubMed  CAS  Google Scholar 

  33. Guex, N., and Peitsch, M. C. (1997) Electrophoresis, 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  34. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) Bioinformatics, 22, 195–201.

    Article  PubMed  CAS  Google Scholar 

  35. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003) Nucleic Acids Res., 31, 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  36. Kopp, J., and Schwede, T. (2004) Nucleic Acids Res., 32, D230–D234.

    Article  PubMed  CAS  Google Scholar 

  37. Walton, T. A., and Sousa, M. C. (2004) Mol. Cell, 15, 367–374.

    Article  PubMed  CAS  Google Scholar 

  38. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res., 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  39. Lindahl, E., Hess, B., and Spoel, D. (2001) J. Mol. Mod., 7, 306–317.

    CAS  Google Scholar 

  40. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. (1992) Proc. Natl. Acad. Sci. USA, 89, 2195–2199.

    Article  PubMed  CAS  Google Scholar 

  41. Padlan, E. A. (1994) Mol. Immunol., 31, 169–217.

    Article  PubMed  CAS  Google Scholar 

  42. Langone, J. (1982) Adv. Immunol., 32, 157–241.

    Article  PubMed  CAS  Google Scholar 

  43. Lewis, M. J., Meehan, M., Owen, P., and Woof, J. M. (2008) J. Biol. Chem., 283, 17615–17623.

    Article  PubMed  CAS  Google Scholar 

  44. Meininger, D. P., Rance, M., Starovasnik, A., Fairbrother, W. J., and Skelton, N. J. (2000) Biochemistry, 39, 26–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sidorin.

Additional information

Original Russian Text © E. V. Sidorin, R. H. Ziganshin, G. A. Naberezhnykh, G. N. Likhatskaya, E. V. Trifonov, S. D. Anastiuk, O. V. Chernikov, T. F. Solov’eva, 2009, published in Biokhimiya, 2009, Vol. 74, No. 4, pp. 501–514.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-262, February 8, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidorin, E.V., Ziganshin, R.H., Naberezhnykh, G.A. et al. Chaperone Skp from Yersinia pseudotuberculosis exhibits immunoglobulin G binding ability. Biochemistry Moscow 74, 406–415 (2009). https://doi.org/10.1134/S0006297909040087

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909040087

Key words

Navigation