Skip to main content
Log in

Effect of calcium chelators on the formation and oxidation of the slowly relaxing reduced plastoquinone pool in calcium-depleted PSII membranes. Investigation of the F0 yield

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The F0 fluorescence yield in intact photosystem II (PSII), Ca-depleted PSII (PSII(-Ca/NaCl)), and Mn-depleted PSII membranes was measured before and after dim light treatment (1–2 min), using flash-probe fluorescence and fluorescence induction kinetic measurements. The value of F0 after the light treatment (F’0) was larger than F0 in dark-adapted PSII membranes and depended on the appearance of the slowly relaxing, reduced plastoquinone pool (t 1/2 = 4 min) formed during preillumination, which was not totally reoxidized before the F’0 measurement. In PSII(-Ca/NaCl) such a pool also appeared, but the F’0 yield was even higher than in intact PSII membranes. In Mn-depleted PSII membranes, the pool did not form. Interestingly, the yield of F’0 in Ca-depleted PSII membranes prepared using chelators (EGTA and citrate) or containing 5 mM EGTA was significantly lower than in PSII(-Ca/NaCl) samples prepared without chelators. These data indicate that chelators inhibit the reduction of QA and QB and formation of the slowly relaxing plastoquinone pool, or alternatively they increase the rate of its oxidation. Such an effect can be explained by coordination of the chelator molecule to the Mn cluster in PSII(-Ca/NaCl) membranes, rather than different amounts of residual Ca2+ in the membranes (with or without the chelator), since the remaining oxygen-evolving activity (∼15%) in PSII(-Ca/NaCl) samples did not depend on the presence of the chelator. Thus, chelators of calcium cations not only have an effect on the EPR properties of the S2 state in PSII(-Ca/NaCl) samples, but can also influence the PSII properties determining the rate of plastoquinone pool reduction and/or oxidation. The effect of some toxic metal cations (Cd, Cu, Hg) on the formation of the slowly relaxing pool in PSII membranes was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

F0 :

minimal fluorescence of “open” reaction centers in dark-adapted samples

F’0):

minimal fluorescence measured after preliminary exposure of a sample to light

Fmax :

maximum fluorescence yield

DPC:

1,5-diphenylcarbazide

FIK:

fluorescence induction kinetics

OEC:

oxygen-evolving complex

PSII:

photosystem II

PSII(-Mn):

Mn-depleted photosystem II

PSII(-Ca/NaCl):

photosystem II with Ca extracted by treatment with 2 M NaCl

PSII(-Ca/NaCl + 50 μM EGTA):

photosystem II with Ca extracted by treatment with 2 M NaCl in the presence of 50 μM EGTA

PSII(-Ca/NaCl + 5 mM EGTA):

photosystem II with Ca extracted by treatment with 2 M NaCl in the presence of 5 mM EGTA

PSII(-Ca/NaCl + 5 mM EGTA →-EGTA):

photosystem II with Ca extracted by treatment with 2 M NaCl in the presence of 5 mM EGTA and with subsequent washing free of EGTA

PSII(-Ca/pH 3.0):

photosystem II with Ca extracted by treatment with citrate buffer (pH 3.0)

References

  1. McEvoy, J. P., and Brudvig, G. W. (2006) Chem. Rev., 106, 4455–4482.

    Article  PubMed  CAS  Google Scholar 

  2. Debus, R. J. (1992) Biochim. Biophys. Acta, 1102, 269–352.

    Article  PubMed  CAS  Google Scholar 

  3. Nelson, N., and Yocum, C. F. (2006) Annu. Rev. Plant Biol., 57, 521–565.

    Article  PubMed  CAS  Google Scholar 

  4. Lindberg, K., and Andreasson, L. E. (1996) Biochemistry, 35, 14259–14267.

    Article  PubMed  CAS  Google Scholar 

  5. Hoganson, C. W., and Babcock, G. T. (1997) Science, 277, 1953–1956.

    Article  PubMed  CAS  Google Scholar 

  6. Miqyass, M., van Gorkom, H. J., and Yocum, C. F. (2007) Photosynth. Res., 92, 275–287.

    Article  PubMed  CAS  Google Scholar 

  7. Loll, B., Kern, J., Saenger, W., Zouni, A., and Biesiadka, J. (2005) Nature, 438, 1040–1044.

    Article  PubMed  CAS  Google Scholar 

  8. Yano, J., Kern, J., Sauer, K., Latimer, M. J., Pushkar, Y., Biesiadka, J., Loll, B., Saenger, W., Messinger, J., Zouni, A., and Yachandra, V. K. (2006) Science, 314, 821–825.

    Article  PubMed  CAS  Google Scholar 

  9. Latimer, M. J., DeRose, V. J., Mukerji, I., Yahandra, V. K., Sauer, K., and Klein, M. P. (1995) Biochemistry, 34, 10898–10909.

    Article  PubMed  CAS  Google Scholar 

  10. Ghanotakis, D. F., Babckock, G. T., and Yocum, C. F. (1984) FEBS Lett., 167, 127–130.

    Article  CAS  Google Scholar 

  11. Cammarata, K. V., and Cheniae, G. M. (1987) Plant Physiol., 84, 587–595.

    PubMed  CAS  Google Scholar 

  12. Ghanotakis, D. F., Topper, J. N., Babcock, G. T., and Yocum, C. F. (1984) FEBS Lett., 170, 169–173.

    Article  CAS  Google Scholar 

  13. Boussac, A., and Rutherford, A. W. (1988) Biochemistry, 27, 3476–3483.

    Article  CAS  Google Scholar 

  14. Boussac, A., and Rutherford, A. W. (1988) FEBS Lett., 236, 432–436.

    Article  CAS  Google Scholar 

  15. Ono, T., and Inoue, Y. (1986) Biochim. Biophys. Acta, 850, 380–389.

    Article  CAS  Google Scholar 

  16. Boussac, A., Maison-Peteri, B., Vernotte, C., and Etienne, A.-L. (1985) Biochim. Biophys. Acta, 808, 225–230.

    Article  CAS  Google Scholar 

  17. Andreasson, L.-E., Vass, I., and Styring, S. (1995) Biochim. Biophys. Acta, 1230, 155–164.

    Article  Google Scholar 

  18. Ono, T., and Inoue, Y. (1989) Biochim. Biophys. Acta, 973, 443–449.

    Article  CAS  Google Scholar 

  19. Hallahan, B. J., Nugent, J. H. A., Warden, J. T., and Evans, M. C. W. (1992) Biochemistry, 31, 4562–4573.

    Article  PubMed  CAS  Google Scholar 

  20. Boussac, A., Setif, P., and Rutherford, A. W. (1992) Biochemistry, 31, 1224–1234.

    Article  PubMed  CAS  Google Scholar 

  21. Styring, S., Feyziyev, Y., Mamedov, F., Hillier, W., and Babcock, G. T. (2003) Biochemistry, 42, 6185–6192.

    Article  PubMed  CAS  Google Scholar 

  22. Sivaraja, M., Tso, J., and Dismukes, G. C. (1989) Biochemistry, 28, 9459–9464.

    Article  PubMed  CAS  Google Scholar 

  23. Boussac, A., Zimmermann, J.-L., and Rutherford, A. W. (1989) Biochemistry, 28, 8984–8989.

    Article  PubMed  CAS  Google Scholar 

  24. Ono, T., and Inoue, Y. (1990) Biochim. Biophys. Acta, 1015, 269–277.

    Article  Google Scholar 

  25. Boussac, A., Zimmermann, J.-L., and Rutherford, A. W. (1990) FEBS Lett., 277, 69–74.

    Article  PubMed  CAS  Google Scholar 

  26. Krieger, A., Rutherford, A. W., and Johnson, G. N. (1995) Biochim. Biophys. Acta, 1229, 193–201.

    Article  Google Scholar 

  27. Krieger, A., Rutherford, A. W., and Johnson, G. N. (1998) Biochim. Biophys. Acta, 1364, 46–54.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson, G. N., Boussac, A., and Rutherford, A. W. (1994) Biochim. Biophys. Acta, 1184, 85–92.

    Article  CAS  Google Scholar 

  29. Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett., 134, 231–234.

    Article  CAS  Google Scholar 

  30. Ghanotakis, D. F., and Babckock, G. T. (1983) FEBS Lett., 153, 231–234.

    Article  CAS  Google Scholar 

  31. Porra, R. J., Tompson, W. A., and Kriedemann, P. E. (1989) Biochim. Biophys. Acta, 975, 384–394.

    Article  CAS  Google Scholar 

  32. Arnon, D. J. (1949) Plant Physiol., 24, 1–15.

    Article  PubMed  CAS  Google Scholar 

  33. Ono, T., and Inoue, Y. (1988) FEBS Lett., 227, 147–152.

    Article  CAS  Google Scholar 

  34. Preston, C., and Seibert, M. (1991) Biochemistry, 30, 9615–9624.

    Article  PubMed  CAS  Google Scholar 

  35. Ghirardi, M. L., Lutton, T. W., and Seibert, M. (1996) Biochemistry, 35, 1820–1828.

    Article  PubMed  CAS  Google Scholar 

  36. Strasser, B. J. (1997) Photosynth. Res., 52, 147–155.

    Article  CAS  Google Scholar 

  37. Ono, T.-A., and Inoue, Y. (1984) FEBS Lett., 168, 281–286.

    Article  CAS  Google Scholar 

  38. Miyao, M., and Murata, N. (1984) FEBS Lett., 168, 118–120.

    Article  CAS  Google Scholar 

  39. Miyao, M., and Murata, N. (1986) Photosynth. Res., 10, 489–496.

    Article  CAS  Google Scholar 

  40. Semin, B. K., and Seibert, M. (2004) Biochemistry, 43, 6772–6782.

    Article  PubMed  CAS  Google Scholar 

  41. Pospisil, P., and Dau, H. (2000) Photosynth. Res., 65, 41–52.

    Article  PubMed  CAS  Google Scholar 

  42. Pospisil, P., and Dau, H. (2002) Biochim. Biophys. Acta, 1554, 94–100.

    Article  PubMed  CAS  Google Scholar 

  43. Heredia, P., and De Las Rivas, J. (2003) J. Plant Physiol., 160, 1499–1506.

    Article  PubMed  CAS  Google Scholar 

  44. Toth, S. Z., Schansker, G., and Strasser, R. J. (2005) Biochim. Biophys. Acta, 1708, 275–282.

    Article  PubMed  CAS  Google Scholar 

  45. Strasser, R. J., Srivastava, A., and Govindjee (1995) Photochem. Photobiol., 61, 32–42.

    CAS  Google Scholar 

  46. Velthuys, B. R., and Amesz, J. (1974) Biochim. Biophys. Acta, 333, 85–94.

    Article  CAS  PubMed  Google Scholar 

  47. Krieger-Lizskay, A., and Rutherford, A. W. (1998) Biochemistry, 37, 17339–17344.

    Article  Google Scholar 

  48. Sigfridsson, K. G. V., Bernat, G., Mamedov, F., and Styring, S. (2004) Biochim. Biophys. Acta, 1659, 19–31.

    Article  PubMed  CAS  Google Scholar 

  49. Faller, P., Kienzler, K., and Krieger-Lindskay, A. (2005) Biochim. Biophys. Acta, 1706, 158–164.

    Article  PubMed  CAS  Google Scholar 

  50. Bernier, M., Popovic, R., and Carpentier, R. (1993) FEBS Lett., 321, 19–23.

    Article  PubMed  CAS  Google Scholar 

  51. Yruella, I., Gatzen, G., Picorel, R., and Holtzwarth, A. R. (1996) Biochemistry, 35, 9469–9474.

    Article  Google Scholar 

  52. Jegerschold, C., Arrelano, J. B., Schroder, W. P., van Kan, P. J. M., Baron, M., and Styring, S. (1995) Biochemistry, 34, 12747–12754.

    Article  PubMed  CAS  Google Scholar 

  53. Gutknecht, J. (1981) J. Membr. Biol., 61, 61–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Semin.

Additional information

Published in Russian in Biokhimiya, 2007, Vol. 72, No. 11, pp. 1482–1494.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM07-117, August 31, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semin, B.K., Davletshina, L.N., Bulychev, A.A. et al. Effect of calcium chelators on the formation and oxidation of the slowly relaxing reduced plastoquinone pool in calcium-depleted PSII membranes. Investigation of the F0 yield. Biochemistry Moscow 72, 1205–1215 (2007). https://doi.org/10.1134/S0006297907110065

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907110065

Key words

Navigation