Skip to main content
Log in

Conformational dynamics of human α-fetoprotein-derived heptapeptide LDSYQCT analogs

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Conformational dynamics of a biologically active fragment of α-fetoprotein, the heptapeptide LDSYQCT, and its analogs obtained by site-directed substitutions of amino acid residues were studied. The conformational dynamics of the peptide were conservative under the substitutions Y17F, Y17S, and D15E. Substitutions C19A and S16V resulted only in local changes in the dynamic behavior of the peptide. Chemical modification of cysteine (C19) or dimerization of the peptide by producing a disulfide bond between cysteine residues of two parallel peptide chains, as well as the substitutions C19G, C19S, Q18E, and D15N changed a set of possible conformations and dynamic behavior of all amino acid residues. The most significant changes were caused by substitution of uncharged amino acid residues by charged ones, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFP:

α-fetoprotein

MD:

molecular dynamics

References

  1. Abelev, G. I. (1971) Adv. Cancer Res., 14, 295–358.

    Article  PubMed  CAS  Google Scholar 

  2. Tatarinov, Yu. S. (1994) Human Alpha-Fetoprotein. 30 Years from Basic Research to Clinical Application, RSMU, Moscow.

    Google Scholar 

  3. Mizejewski, G. J. (2004) Exp. Biol. Med., 229, 439–463.

    CAS  Google Scholar 

  4. Terentiev, A. A., and Moldogazieva, N. T. (2006) Biochemistry (Moscow), 71, 120–132.

    Article  CAS  Google Scholar 

  5. Terentiev, A. A. (1997) Vestnik RGMU, 1, 76–79.

    Google Scholar 

  6. Tatarinov, Yu. S., Terentiev, A. A., Moldogazieva, N. T., Tagirova, A. K., Kasimirskaya, V. A., and Pugacheva, O. G. (2004) Med. Immunol. (Moscow), 6, 255–256.

    Google Scholar 

  7. Koide, H., Muto, Y., Kasai, H., Hoshi, K., Takusari, H., Kohri, K., Takahashi, S., Sasaki, T., Tsukumo, K., and Miyake, T. (1992) FEBS Lett., 302, 39–42.

    Article  PubMed  CAS  Google Scholar 

  8. Murray, M. B., Tadaki, D. K., Campion, S. R., Lamerdin, J. A., Srepersu, E. H., Bradrick, T. D., and Niyogi, S. K. (1998) Protein Eng., 11, 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  9. Moldogazieva, N. T., Terentiev, A. A., and Shaitan, K. V. (2005) Biomed. Khim., 51, 127–151.

    PubMed  CAS  Google Scholar 

  10. Gohlke, H., Kiel, C., and Case, D. A. (2003) J. Mol. Biol., 330, 891–913.

    Article  PubMed  CAS  Google Scholar 

  11. Shaitan, K. V., Mikhailyuk, M. G., Leontiev, K. M., Saraikin, S. S., and Belyakov, A. A. (2003) Biofizika, 48, 210–216.

    PubMed  CAS  Google Scholar 

  12. Shaitan, K. V., Mikhailyuk, M. G., Leontiev, K. M., Saraikin, S. S., and Belyakov, A. A. (2002) Biofizika, 47, 411–419.

    PubMed  CAS  Google Scholar 

  13. Shaitan, K. V., Vasil’ev, A. K., Saraikin, S. S., and Mikhailyuk, M. G. (1999) Biofizika, 44, 668–675.

    PubMed  CAS  Google Scholar 

  14. Case, D. A., Cheatham, III, T. E., Darden, T., Golhke, H., Lou, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005) J. Comput. Chem., 26, 1668–1688.

    Article  PubMed  CAS  Google Scholar 

  15. Popov, E. M. (1997) The Problem of Protein [in Russian], Vol. 3, Nauka, Moscow.

    Google Scholar 

  16. Pearlman, D. A., Case, D. A., Caldwell, J. W., Seibel, G. L., Singh, U. C., Weiner, P., and Kollman, P. A. (1991) Amber 4.0, University of California, San Francisco.

    Google Scholar 

  17. Cornell, W. D., Cieplak, P., Bayly, C., Gould, I. R., Merz, K. M., Jr., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) J. Am. Chem. Soc., 117, 5179–5188.

    Article  CAS  Google Scholar 

  18. Westerhoff, H., and van Dam, K. (1992) Thermodynamics and Control of Biological Free-Energy Transduction [Russian translation], Mir, Moscow.

    Google Scholar 

  19. Lemak, A. S., and Balabaev, N. K. (1995) Mol. Simulation, 15, 223–231.

    CAS  Google Scholar 

  20. Lemak, A. S., and Balabaev, N. K. (1996) J. Comput. Chem., 17, 1685–1695.

    Article  CAS  Google Scholar 

  21. Golo, V. L., and Shaitan, K. V. (2002) Biofizika, 47, 611–617.

    PubMed  CAS  Google Scholar 

  22. Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963) J. Mol. Biol., 7, 75–102.

    Article  Google Scholar 

  23. Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol., 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  24. Samanta, U., Bahadur, R. P., and Chakrabarti, P. (2002) Protein Eng., 15, 659–667.

    Article  PubMed  CAS  Google Scholar 

  25. Pangbum, M. K. (1992) FEBS Lett., 308, 280–282.

    Article  Google Scholar 

  26. Zhabin, S. G., Terentiev, A. A., and Gorin, V. S. (1999) Blood Plasma Macroglobulins: Structure, Biological Activity, Clinical Application [in Russian], Novosibirsk.

  27. Bhattacharyya, R., Pal, D., and Chakrabarti, P. (2004) Protein Eng. Design Selec., 17, 795–808.

    Article  CAS  Google Scholar 

  28. Pal, D., and Chakrabarti, P. (2001) J. Biomol. Struct. Dynam., 19, 115–128.

    CAS  Google Scholar 

  29. Rizzuti, B., Sportelli, L., and Guzzi, R. (2001) Biophys. Chem., 94, 107–120.

    Article  PubMed  CAS  Google Scholar 

  30. Tereshkina, K. B., Shaitan, K. V., Levtsova, O. V., and Golik, D. N. (2005) Biofizika, 50, 974–985.

    PubMed  CAS  Google Scholar 

  31. Chelliah, V., and Blundell, T. L. (2005) Biochemistry (Moscow), 70, 835–840.

    Article  CAS  Google Scholar 

  32. Majewski, J., and Ott, J. (2003) Gene, 305, 167–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Moldogazieva.

Additional information

Original Russian Text © N. T. Moldogozievo, A. A. Terentiev, A. N. Kazimirsky, M. Yu. Antonov, K. V. Shaitan, 2007, published in Biokhimiya, 2007, Vol. 72, No. 5, pp. 655–667.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldogazieva, N.T., Terentiev, A.A., Kazimirsky, A.N. et al. Conformational dynamics of human α-fetoprotein-derived heptapeptide LDSYQCT analogs. Biochemistry Moscow 72, 529–539 (2007). https://doi.org/10.1134/S0006297907050094

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297907050094

Key words

Navigation