Skip to main content
Log in

Global stabilization of the unstable Reaction-Wheel Pendulum

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The paper deals with the problem of the Reaction Wheel Pendulum stabilization about unstable (inverted) position for arbitrary initial conditions. Considered mechanical system consists of a physical pendulum with a symmetric disk attached to the end of the pendulum, which is free to spin about an axis parallel to the axis of rotation of the pendulum. The disk is actuated by a DC-motor. The coupling torque generated by the angular acceleration of the disk is used to control of the pendulum. The switching control law is proposed to swinging up the pendulum and balancing it about the inverted position. The nonlinear swinging up control law is proposed ensuring global stabilization of the pendulum about inverted position. The Energy-based Speed-gradient (EBSG) control scheme is used to designing the swinging-up controller. The modification of the EBSG method is proposed to ensure attainability of the inverted position of the pendulum for all initial states of the system. The balance controller is designed on the basis of the Variable Structure Control with forced sliding mode. Numerical simulation results are presented showing achievement of the posed control goal by means of the control action of small magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievsky, B.R., Stabilization of the Inverted Reaction Wheel Pendulum, in Upravlenie v fizikotehnicheskikh sistemakh (Control in Physical and Technical Systems), Fradkov, A.L., Ed., St. Petersburg: Nauka, 2004, pp. 52–71.

    Google Scholar 

  2. Andrievsky, B.R., Blekhman, I.I., Bortsov, Yu.A., et al., Upravlenie mekhatronnymi vibratsionnymi ustanovkami (Control of Mechanotronic Vibrational Units), Blekhman, I.I. and Fradkov, A.L., Eds., St. Petersburg: Nauka, 2001.

    Google Scholar 

  3. Andrievsky, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya s primerami na yazyke MATLAB (Selected Chapters of the Automatic Control Theory with Examples in MATLAB), St. Petersburg: Nauka, 1999.

    Google Scholar 

  4. Andrievsky, B.R., Guzenko, P.Ju., and Fradkov, A.L., Control of Nonlinear Vibrations of Mechanical Systems via the Method of Velocity Gradient, Autom. Remote Control, 1996, vol. 57, no. 4, part 1, pp. 456–467.

    Google Scholar 

  5. Andrievsky, B.R., Stockii, A.A., and Fradkov, A.L., Velocity-Gradient Algorithms in Control and Adaptation Problems, Autom. Remote Control, 1988, vol. 49, no. 12, part 1, pp. 1533–1564.

    Google Scholar 

  6. Beznos, A.V., Grishin, A.A., Lenskii, A.V., Ohotsimskii, D.E., and Formal’skii, A.M., A Flywheel Use-based Control for a Pendulum with a Fixed Suspension Point, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2004, no. 1, pp. 27–38.

  7. Grishin, A.A., Lenskii, A.V., Okhotsimsky, D.E., Panin, D.A., and Formal’skii, A.M., A Control Synthesis for an Unstable Object. An Inverted Pendulum, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2002, no. 5, pp. 14–24.

  8. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.

    Google Scholar 

  9. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (Course of Automatic Control Theory), Moscow: Nauka, 1986.

    Google Scholar 

  10. Utkin, V.I., Skol’zyashchie rezhimi v zadachakh optimizatsii i upravleniya, Moscow: Nauka, 1981. Translated under the title Sliding Modes in Control Optimization, New York: Springer-Verlag, 1992.

    Google Scholar 

  11. Fradkov, A.L., Kiberneticheskaja fizika. Principy i primery (Cybernetical Physics: Principles and Examples), St. Petersburg: Nauka, 2003.

    Google Scholar 

  12. Fradkov, A.L., Speed-Gradient Scheme and Its Application in Adaptive Control Problems, Autom. Remote Control, 1979, vol. 40, no. 9, pp. 1333–1342.

    MATH  Google Scholar 

  13. Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh (Adaptive Control in Complex Systems), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  14. Akulenko, L.D., Parametric Control of Oscillations and Rotations of Physical Pendulum, J. Appl. Math. Mech., 1991, vol. 57, no. 2, pp. 82–91.

    MathSciNet  Google Scholar 

  15. Åström, K.J. and Furuta, K., Swinging up a Pendulum by Energy Control, Automatica, 2000, vol. 36, no. 2, pp. 287–295.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fradkov, A.L., Andrievsky, B.R., and Boykov, K.B., Nonlinear Excitability Analysis with Application to Two-pendulum System, Proc. 21st IASTED Conf. “Modeling, Identification and Control” (MIC 2002), Innsbruck, 2002, pp. 374–379.

  17. Fradkov, A.L., Swinging Control of Nonlinear Oscillations, Int. J. Control, 1996, vol. 64, no. 6, pp. 1189–1202.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fradkov, A.L. and Pogromsky, A.Yu., Introduction to Control of Oscillations and Chaos, Singapore: World Scientific, 1998.

    Book  MATH  Google Scholar 

  19. Lenci, S. and Rega, G., Numerical Control of Impact Dynamics of Inverted Pendulum Through Optimal Feedback Strategies, J. Sound Vib., 2000, vol. 236, no. 3, pp. 505–527.

    Article  Google Scholar 

  20. Mori, S., Nishihara, H., and Furuta, K., Control of Unstable Mechanical Systems. Control of Pendulum, Int. J. Control, 1976, vol. 23, no. 5, pp. 673–692.

    Article  Google Scholar 

  21. Schmid, Chr., An Autonomous Self-rising Pendulum. Invited Paper, Proc. Eur. Control Conference ECC’99, Karlsruhe, 1999.

  22. Shiriaev, A., Pogromsky, A., Ludvigsen, H., et al., On Global properties of Passivity-based Control of an Inverted Pendulum, Int. J. Robust. Nonlin. Control, 2000, vol. 10, no. 4, pp. 283–300.

    Article  MathSciNet  MATH  Google Scholar 

  23. Shiriaev, A.S., Egeland, O., Ludvigsen, H., and Fradkov, A.L., VSS-version of Energy-based Control for Swinging up a Pendulum, Syst. Control Let., 2001, vol. 44, no. 1, pp. 45–56.

    Article  MathSciNet  MATH  Google Scholar 

  24. Spong, M.W., Corke, P., and Lozano, R., Nonlinear Control of the Reaction Wheel Pendulum, Automatica, 2001, vol. 37, pp. 1845–1851.

    Article  MATH  Google Scholar 

  25. Spong, M. and Tsao, T.-Ch., Mechatronics Education at the University of Illinois, Proc. 14th World Congress of IFAC, Beijing, 1999, no. M-6a-01-1.

  26. Wiklund, M., Kristenson, A., and Åström, K., A New Strategy for Swinging up an Inverted Pendulum, Preprint of 12th IFAC World Congress, 1993, vol. 9, pp. 151–154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.R. Andrievsky, 2009, published in Upravlenie Bol’shimi Sistemami, 2009, No. 24, pp. 258–280.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrievsky, B.R. Global stabilization of the unstable Reaction-Wheel Pendulum. Autom Remote Control 72, 1981–1993 (2011). https://doi.org/10.1134/S0005117911090189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911090189

Keywords

Navigation