Skip to main content
Log in

Antimicrobial Peptaibols, Trichokonins, Inhibit Mycelial Growth and Sporulation and Induce Cell Apoptosis in the Pathogenic Fungus Botrytis cinerea

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Trichokonins (TKs) are antimicrobial peptaibols extracted from Trichoderma pseudokoningii strain SMF2. In this paper, it was discovered that TK VI, the main active ingredient of TKs, had a profound inhibitory effect on the growth and sporulation of the moth orchid gray mold, Botrytis cinerea. In addition, TK VI increased the cell membrane permeability of the pathogen. Further investigation of nuclear DNA fragmentation, subcellular structure disintegration, and mitochondrial membrane potential depolarization, as well as the appearance of reactive oxygen species, indicated that TK VI could induce programmed cell death in the necrotrophic pathogenic fungus B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strange, R.N. and Scott, P.R., Annu. Rev. Phytopathol., 2005, vol. 43, pp. 83–116.

    Article  PubMed  CAS  Google Scholar 

  2. Benitez, T., Rincon, A.M., Limon, M.C., and Codon, A.C., Int. Microbiol., 2004, vol. 7, no. 4, pp. 249–260.

    PubMed  CAS  Google Scholar 

  3. Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., and Lorito, M., Nat. Rev. Microbiol., 2004, vol. 2, no. 1, pp. 43–56.

    Article  PubMed  CAS  Google Scholar 

  4. Viterbo, A., Harel, M., Horwitz, B., Chet, I., and Mukherjee, P., Appl. Environ. Microbiol., 2005, vol. 71, no. 10, pp. 6241–6246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Howell, C.R., Plant Dis., 2003, vol. 87, no. 1, pp. 4–10.

    Article  Google Scholar 

  6. Sharman, G.J., Try, A.C., Williams, D.H., Ainsworth, A.M., Beneyto, R., Gibson, T.M., et al., Biochem. J., 1996, vol. 320, no. 3, pp. 723–728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wiest, A., Grzegorski, D., Xu, B.W., Goulard, C., Rebuffat, S., Ebbole, D.J., et al., J. Biol. Chem., 2002, vol. 277, no. 23, pp. 20862–20868.

    Article  PubMed  CAS  Google Scholar 

  8. Luo, Y., Zhang, D.D., Dong, X.W., Zhao, P.B., Chen, L.L., Song, X.Y., et al., FEMS Microbiol. Lett., 2010, vol. 313, no. 2, pp. 120–126.

    Article  PubMed  CAS  Google Scholar 

  9. Shi, M., Wang, H.N., Xie, S.T., Luo, Y., Sun, C.Y., Chen, X.L., and Zhang, Y.Z., Mol. Cancer, 2010, vol. 9, no. 3, pp. 26–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shi M., Chen L., Wang, X.W., Zhang, T., Zhao, P.B., Song, X.Y., et al., Microbiology, 2012, vol. 158, no. 1, pp. 166–175.

    Article  PubMed  CAS  Google Scholar 

  11. Song, X.Y., Shen, Q.T., Xie, S.T., Chen, X.L., Sun, C.Y., and Zhang, Y.Z., FEMS Microbiol. Lett., 2006, vol. 260, no. 1, pp. 119–125.

    Article  CAS  Google Scholar 

  12. Song, X.Y., Xie, S.T., Chen, X.L., Sun, C.Y., Shi, M., and Zhang, Y.Z., J. Biotechnol., 2007, vol. 131, no. 2, pp. 209–215.

    Article  PubMed  CAS  Google Scholar 

  13. Whitmore, L. and Wallace, B.A., Nucleic Acids Res., 2004, vol. 32, pp. D593–D594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, H.Y., Luo, Y., Zhang, X.S., Shi, W.L., Gong, Z.T., Shi, M., et al., FEMS Microbiol. Lett., 2014, vol. 354, no. 1, pp. 75–82.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, Z.H., Wang, Y., Zhou, C.Y., Kang, G.J., Guo, W.Y., and Pei, X.P., J. Xinxiang Med. Univ., 2014, vol. 31, no. 1, pp. 22–25.

    Google Scholar 

  16. Yang, Z.H. and Dickman, M.B., Mol. Plant Microb. Interact., 1999, vol. 12, no. 5, pp. 430–439.

    Article  CAS  Google Scholar 

  17. Cheng, J., Park, T.S., Chio, L.C., Fischl, A.S., and Ye, X.S., Mol. Cell. Biol., 2003, vol. 23, no. 1, pp. 163–177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wada, S., Iida, A., Asami, K., Tachikawa, E., and Fujita, T., Biochim. Biophys. Acta, 1997, vol. 1325, no. 2, pp. 209–214.

    Article  PubMed  CAS  Google Scholar 

  19. Hacker, G., Cell Tissue Res., 2000, vol. 301, pp. 5–17.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenberg, T., Buttner, S., Kroemer, G., and Madeo, F., Apoptosis, 2007, vol. 12, no. 5, pp. 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  21. Pereira, C., Silva, R.D., Johansson, L.B., Sousa, M.J., and Corte-Real, M., Biochim. Biophys. Acta, 2008, vol. 1783, no. 7, pp. 1286–1302.

    Article  PubMed  CAS  Google Scholar 

  22. Perrone, G.G., Tan, S.X., and Dawes, I.W., Biochim. Biophys. Acta, 2008, vol. 1783, no. 7, pp. 1354–1368.

    Article  PubMed  CAS  Google Scholar 

  23. Leiter, E., Szappanos, H., Oberparleiter, C., Kaiserer, L., Csernoch, L., Pusztahelyi, T., et al., Antimicrob. Agents Chemother., 2005, vol. 49, no. 6, pp. 2445–2453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Ren, A., Dong, P. et al. Antimicrobial Peptaibols, Trichokonins, Inhibit Mycelial Growth and Sporulation and Induce Cell Apoptosis in the Pathogenic Fungus Botrytis cinerea. Appl Biochem Microbiol 54, 396–403 (2018). https://doi.org/10.1134/S0003683818040154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818040154

Keywords

Navigation