Skip to main content
Log in

Anaerobic biosynthesis of intermediates of reductive branch of tricarboxylic acids cycle by Escherichia coli strains with inactivated frdAB and sdhAB genes

  • Producers, Biology, Selection, and Gene Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The genes frdAB and sdhAB, which encode components of fumarate reductase and succinate dehydrogenase, have been deleted in a recombinant E. coli strain with the inactivated pathways of mixed-acid fermentation and a modified system of glucose transport and phosphorylation upon the heterological expression of the pyruvate carboxylase gene. Under anaerobic conditions, the parental strain efficiently converted glucose to succinic acid without synthesizing notable amounts of fumaric or malic acid. Upon individual deletion of the frdAB genes, the mutant strain fermented glucose to succinic acid less efficiently secreting notable amounts of malic and fumaric acids. Individual deletion of the sdhAB genes in the parental strain did not significantly affect the formation of the main fermentation end-product. The combined inactivation of fumarate reductase and succinate dehydrogenase in the constructed strain enhanced the anaerobic conversion of glucose to fumaric and malic acids with the activation of the glyoxylate bypass and decrease in the contribution of the reductive branch of the TCA cycle to the formation of the target products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

CL:

culture liquid

PCR:

polymerase chain reaction

TCA cycle:

tricarboxylic acid cycle

AceA:

isocitrate lyase

AceB:

malate synthase

AcnA, AcnB:

aconitases

FumA, FumB, FumC:

isoenzymes of fumarase

FrdABCD:

fumarate reductase enzymatic complex

GltA:

citrate synthase

Mdh:

malate dehydrogenase

NADH:

reduced nicotinamide adenine dinucleotide

References

  1. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., and Jones, S., Top Value Added Chemicals from Biomass, vol. 1, Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC: NLRE, Dept. Energy, USA, 2004.

    Google Scholar 

  2. Yin, X., Li, J., Shin, H.D., Du, G., Liu, L., and Chen, J., Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects, Biotechnol. Adv., 2015, vol. 33, pp. 830–841.

    Article  CAS  PubMed  Google Scholar 

  3. Jantama, K., Haupt, M.J., Svoronos, S.A., Zhang, X., Moore, J.C., Shanmugam, K.N., and Ingram, L.O., Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate, Biotechnol. Bioeng., 2008, vol. 99, pp. 1140–1153.

    Article  CAS  PubMed  Google Scholar 

  4. Sánchez, A.M., Bennett, G.N., and San, K.Y., Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity, Metab. Eng., 2005, vol. 7, pp. 229–239.

    Article  PubMed  Google Scholar 

  5. Zhang, X., Wang, X., Shanmugam, K.T., and Ingram, L.O., L-malate production by metabolically engineered Escherichia coli, Appl. Environ. Microbiol., 2011, vol. 77, pp. 427–434.

    Article  CAS  PubMed  Google Scholar 

  6. Song, C.W., Kim, D.I., Choi, S., Jang, J.W., and Lee, S.Y., Metabolic engineering of Escherichia coli for the production of fumaric acid, Biotechnol. Bioeng., 2013, vol. 110, pp. 2025–2034.

    Article  CAS  PubMed  Google Scholar 

  7. Van De Graaf, M.J., Valianpoer, F., Fiey, G., Delattre, L., and Schulten, E.A.M., Process for the crystallization of succinic acid, Int. Patent Appl. no. PCT/EP2010/067868, C 07 C 51/43, C 07 C 55/10, C 12 P 7/46, 2010.

    Google Scholar 

  8. Zelle, R.M., de Hulster, E., van Winden, W.A., de Waard, P., Dijkema, C., Winkler, A.A., Geertman, J.M., van Dijken, J.P., Pronk, J.T., and van Maris, A.J., Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export Appl. Environ. Microbiol., 2008, vol. 74, pp. 2766–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jansen, M.L. and van Gulik, W.M., Towards large scale fermentative production of succinic acid, Curr. Opin. Biotechnol., 2014, vol. 30, pp. 190–197.

    Article  CAS  PubMed  Google Scholar 

  10. Morzhakova, A.A., Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Rekombinantnye shtammy Escherichia coli, defitsitnye po putyam smeshannokislotnogo brozheniya, sposobnye k bystromu aerobnomu rostu na glyukoze pri snizhennom effekte Krebtri Appl. Biochem. Microbiol., 2013, vol. 49, no. 2, pp. 136–143.

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  12. Datsenko, K.A. and Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 99, pp. 6640–6645.

    Article  Google Scholar 

  13. Katashkina, Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., Gulevich, A.Yu., Minaeva, N.I., Doroshenko, V.G., Biryukova, I.V., and Mashko, S.V., Tuning the expression level of a gene located on a bacterial chromosome, Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 719–726.

    Article  CAS  Google Scholar 

  14. Gulevich, A.Yu., Skorokhodova, A.Yu., Ermishev, V.Yu., Krylov, A.A., Minaeva, N.I., Polonskaya, Z. M., Zimenkov, D.V., Biryukova, I.V., and Mashko, S.V., A new method for the construction of translationally coupled operons in a bacterial chromosome, Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 505–514.

    Article  CAS  Google Scholar 

  15. Skorokhodova, A.Yu., Gulevich, A.Yu., Morzhakova, A.A., Shakulov, R.S., and Debabov, V.G., Anaerobic synthesis of succinic acid by recombinant Escherichia coli strains with activated NAD+-reducing pyruvate dehydrogenase complex, App. Biochem. Microbiol., 2011, vol. 47, no. 4, pp. 373–380.

    Article  CAS  Google Scholar 

  16. Fischer, C.R., Tseng, H.C., Tai, M., Prather, K.L., and Stephanopoulos, G., Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli, Appl. Microbiol. Biotechnol., 2010, vol. 88, pp. 265–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maklashina, E., Berthold, D.A., and Cecchini, G., Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth J. Bacteriol., 1998, vol. 180, pp. 5989–5996.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steinsiek, S., Frixel, S., Stagge, S., and Bettenbrock, K., Characterization of E. coli MG1655 and frdA and sdhC mutants at various aerobiosis levels, J. Biotechnol., 2011, vol. 154, pp. 35–45.

    Article  CAS  PubMed  Google Scholar 

  19. Park, S.J., Chao, G., and Gunsalus, R.P., Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter, J. Bacteriol., 1997, vol. 179, pp. 4138–4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skorokhodova.

Additional information

Original Russian Text © A.Yu. Skorokhodova, A.Yu. Gulevich, V.G. Debabov, 2015, published in Biotekhnologiya, 2015, No. 6, pp. 9–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodova, A.Y., Gulevich, A.Y. & Debabov, V.G. Anaerobic biosynthesis of intermediates of reductive branch of tricarboxylic acids cycle by Escherichia coli strains with inactivated frdAB and sdhAB genes. Appl Biochem Microbiol 52, 679–684 (2016). https://doi.org/10.1134/S0003683816070061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816070061

Keywords

Navigation