Skip to main content
Log in

Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells Under Autotrophic and Mixotrophic Culture Conditions

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2–3 and 1.6–2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2–7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krajčovič, J., Vesteg, M., and Schwartzbach, S.D., J. Biotechnol., 2015, no. 202, pp. 135–135.

    Article  PubMed  Google Scholar 

  2. Ahmadinejad, N., Dagan, T., and Martin, W., Gene, 2007, vol. 402, no. 1, pp. 35–39.

    Article  CAS  PubMed  Google Scholar 

  3. Takeyama, H., Kanamaru, A., Yoshino, Y., Kakuta, H., Kawamura, Y., and Matsunaga, T., Biotechnol. Bioeng., 1997, vol. 53, no. 2, pp. 185–190.

    Article  CAS  PubMed  Google Scholar 

  4. Afiukwa, C. and Ogbonna, J., Afr. J. Biotech., 2007, vol. 6, no. 22, pp. 2612–2615.

    CAS  Google Scholar 

  5. Ogbonna, J., Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 2, pp. 217–225.

    Article  CAS  PubMed  Google Scholar 

  6. Richtera, P.R., Liub, Y., Anb, Y., Lib, X., Nasira, A., Straucha, S.M., Beckera, I., Krügera, J., Schustera, M., Ntefidoua, M., Daikera, V., Haaga, F.W.M., Aiachc, A., and Leberta, M., Life Sci. Space Res., 2015, vol. 4, no. 1, pp. 1–5.

    Article  Google Scholar 

  7. Tokunaga, M., Nakano, Y., and Kitaoka, S., Protozoology, 1979, vol. 26, no. 3, pp. 471–473.

    Article  CAS  Google Scholar 

  8. Rodriguez-Zavala, J., Ortiz-Cruz, M., Mendoza-Hernandez, G., and Moreno-Sanchez, R., J. Appl. Microbiol., 2010, vol. 109, no. 6, pp. 2160–2172.

    Article  CAS  PubMed  Google Scholar 

  9. Ono, K., Kawanaka, Y., Inui, H., Miyatake, K., Kitaoka, S., and Nakano, Y., J. Biochem., 1995, vol. 117, no. 6, pp. 1178–1182.

    CAS  PubMed  Google Scholar 

  10. Yoval-Sanchez, B., Jasso-Chavez, R., Lira-Silva, E., Moreno-Sanchez, R., and Rodriguez-Zavala, J., J. Bioenerg. Biomembr., 2011, vol. 43, no. 1, pp. 519–530.

    Article  CAS  PubMed  Google Scholar 

  11. Ogbonna, J., Tomiyama, S., and Tanaka, H., J. Appl. Phycol., 1998, vol. 10, no. 1, pp. 67–74.

    Article  CAS  Google Scholar 

  12. Grune, T., Lietz, G., Palou, A., Ross, A.C., Stahl, W., Tang, G., Thurnham, D., Shi-an, Y., and Biesalski, H.K., J. Nutr., 2010, vol. 140, no. 12, pp. 2268S–2285S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sies, H. and Stahl, W., Am. J. Clin. Nutr., 1995, vol. 62, no. 6, p. 1315.

    Google Scholar 

  14. Foyer, C.H. and Shigeoka, S., Plant Physiol., 2011, vol. 55, no. 1, pp. 93–100.

    Article  Google Scholar 

  15. Mokrosnop, V.M. and Zolotareva, E.K., Biotechnol. Acta, 2014, vol. 7, no. 2.

    Google Scholar 

  16. Li, Z., Keasling, J.D., and Niyogi, K.K., Plant Physiol., 2012, vol. 158, no. 1, pp. 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Munne-Bosch, S., Weiler, E.W., Alegre, L., Müller, M., Düchting, P., and Falk, J., Planta, 2007, vol. 225, no. 3, pp. 681–691.

    Article  CAS  PubMed  Google Scholar 

  18. Ogbonna, J., Tomiyama, S., and Tanaka, H., J. Biotechnol., 1999, vol. 70, nos. 1–3, pp. 213–221.

    Article  CAS  Google Scholar 

  19. Cramer, M. and Myer, J., Arch. Microbiol., 1952, vol. 17, nos. 1–4, pp. 384–402.

    CAS  Google Scholar 

  20. Ryynanen, M., Lampi, A., Salo-Vaananen, P., Ollilainen, V., and Piironen, V., J. Food Compos. Anal., 2004, vol. 17, no. 6, pp. 749–765.

    Article  Google Scholar 

  21. Lee, J., Ye, L., Landen, W.O., Eitenmiller, J., and Eitenmiller, R.R., J. Food Compos. Anal., 2000, vol. 13, no. 1, pp. 45–57.

    Article  CAS  Google Scholar 

  22. Hiyama, T., Nishimura, M., and Chance, B., Anal. Biochem., 1969, no. 29, pp. 339–339.

    Article  CAS  PubMed  Google Scholar 

  23. Lichtenthaler, H.K., Meth. Enzymology, 1987, vol. 148, no. 2, pp. 350–382.

    Article  CAS  Google Scholar 

  24. Cunningham, F.X.Jr. and Schiff, J.A., Plant Physiol., 1986, vol. 80, no. 416, pp. 223–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mokrosnop, V.M., Polishchuk, O.V., and Zolotar’ova, O.K., Mikrobiol. Biotekhnol., 2014, no. 3 (27), pp. 49–56.

    Google Scholar 

  26. Fujita, T., Aoyagi, H., Ogbonna, J.C., and Tanaka, H., Appl. Microbiol. Biotechnol., 2008, vol. 79, no. 3, pp. 371–378.

    Article  CAS  PubMed  Google Scholar 

  27. Ruggeri, B.A., Gray, R.J.H., Wakins, T.R., and Tomlins, R.I., Appl. Environ. Microbiol., 1985, vol. 50, no. 4, pp. 1404–1408.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mokrosnop.

Additional information

Original Russian Text © V.M. Mokrosnop, A.V. Polishchuk, E.K. Zolotareva, 2016, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2016, Vol. 52, No. 2, pp. 230–236.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrosnop, V.M., Polishchuk, A.V. & Zolotareva, E.K. Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells Under Autotrophic and Mixotrophic Culture Conditions. Appl Biochem Microbiol 52, 216–221 (2016). https://doi.org/10.1134/S0003683816020101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816020101

Keywords

Navigation