Skip to main content
Log in

Influence of oxygenated derivatives of linoleic and linolenic acids on the formation of conidia and protoperithecia in wild-type and photoreceptor complex mutants of Neurospora crassa

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The regulatory effect of two oxyderivatives of unsaturated fatty acids (oxylipins), 18-hydroxy(9Z,12Z)-octadecadienoic acid (18-HODE) and 18-(9Z,12Z,15Z)-octadecatrienoic acid (18-HOTrE), on the sexual and asexual sporulation of wild-type Neurospora crassa strains and wc-1 and wc-2 mutants was studied. In the wild-type strain, 18-HODE, unlike 18-HOTrE, stimulated protoperithecia formation in the dark and in the light. In the same strain, the studied oxylipins influenced conidiogenesis only under illumination. 18-HODE stimulated and 18-HOTrE inhibited the conidia formation. Oxylipins had no effect on protoperithecia formation in photoreceptor complex mutants, which apparently indicated its involvement in signal transduction in N. crassa. The stimulating action of the studied oxylipins on conidiagenesis in wc-1 and the lack of action in wc-2 may indicate alternative signaling pathways of oxylipins in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreou, A., Brodhun, F., and Feussner, I., Prog. Lipid Res., 2009, vol. 48, no. 1, pp. 148–170.

    Article  CAS  PubMed  Google Scholar 

  2. Champe, S.P., Rao, P., and Chang, A., J. Gen. Microbiol., 1987, vol. 133, no. 5, pp. 1383–1387.

    CAS  PubMed  Google Scholar 

  3. Champe, S.P. and El-Zayat, A.A., J. Bacteriol., 1989, vol. 171, no. 7, pp. 3982–3988.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Mazur, P., Meyers, H.V., and Nakanishi, K., Tetrahedron Lett., 1990, vol. 31, no. 21, pp. 3837–3840.

    Article  CAS  Google Scholar 

  5. Krijgsheld, P., Bleichrodt, R., van Veluw, G.J., Wang, F., Muller, W.H., Dijksterhuis, J., and Wosten, H.A.B., Studies Mycology, 2013, vol. 74, no. 1, pp. 1–29.

    Article  CAS  Google Scholar 

  6. The Mycota, Kues, U. and Fischer, R., Eds., Heidelberg: Springer, 2006, vol. 1, pp. 203–213.

    Google Scholar 

  7. Filippovich, S.Yu., Bachurina, G.P., and Shcherbakov, D.L., Appl. Biochem. Microbiol. 2015, vol. 51, no. 3, pp. 342–349.

    Article  CAS  Google Scholar 

  8. Kritskii, M.S., Belozerskaya, T.A., Sokolovskii, V.Yu., and Filippovich, S.Yu., Mol. Biol., 2005, vol. 39, no. 4, pp. 602–617.

    CAS  Google Scholar 

  9. Gessler, N.N., Filippovich, S.Yu., Bachurina, G.P., Groza, N.V., Dorodnikova, E.A., and Belozerskaya, T.A., Microbiology (Moscow), 2012, vol. 81, no. 5, pp. 542–548.

    Article  CAS  Google Scholar 

  10. Groza, N.V., Ivanov, I.V., Romanov, S.G., Myagkova, G.I., and Nigam, S., Tetrahedron, 2002, vol. 58, no. 49, pp. 9859–9863.

    Article  CAS  Google Scholar 

  11. Groza, N.V., Ivanov, I.V., Golovanov, A.B, and Myagkova, G.I., Vestnik MITKhT, 2006, vol. 1, no. 4, pp. 29–32.

    Google Scholar 

  12. Davis, R.V. and de Serres, F.J., Methods Enzymol., 1970, vol. 17, pp. 79–143.

    Article  Google Scholar 

  13. Lee, K., Dunlap, J.C., and Loros, J.J., Genetics, 2003, vol. 163, no. 1, pp. 103–114.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Brody, S., Oelhafen, K., Schneider, K., Perrino, S., Goetz, A., Wang, C.H, and English, C., Fungal Genet. Biol., 2010, vol. 47, no. 2, pp. 159–168.

    Article  CAS  PubMed  Google Scholar 

  15. Gyongyosi, N. and Kaldi, K., Antioxid. Redox Signal., 2014, no. 18, pp. 3007–3023.

    Article  Google Scholar 

  16. Vellosillo, T., Martinez, M., Lopez, M.A., Vicente, J., Cascon, T., Dolan, L., et al., Plant Cell, 2007, vol. 19, no. 3, pp. 831–846.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sokolovskii, V.Yu. and Belozerskaya, T.A., Usp. Biol. Khim., 2000, vol. 40, pp. 85–152.

    Google Scholar 

  18. Affeldt, K.J., Brodhagen, M., and Keller, N.P., Toxins, 2012, vol. 9, pp. 695–717.

    Article  Google Scholar 

  19. Neurospora: Genomics and Molecular Biology, Kasbekar, D.P. and McCluskey, K., Eds., New York: Horizon Scientific Press, 2013, ch. 9, pp. 155–170.

  20. Scala, V., Giorni, P., Cirlini, M., Ludovici, M., Visentin, I., Cardinale, F., et al., Front. Microbiol., 2014, vol. 5, p. 669. doi: 10.3389/fmicb.2014.00669

    PubMed Central  PubMed  Google Scholar 

  21. McPhail, K.L., France, D., Cornell-Kennon, S., and Gerwick, W.H., J. Nat. Prod., 2004, vol. 67, no. 6, pp. 1010–1013.

    Article  CAS  PubMed  Google Scholar 

  22. Filippovich, S.Yu., Bachurina, G.P., and Kritskii, M.S., Appl. Biochem. Microbiol. 2004, vol. 40, no. 4, pp. 398–403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Belozerskaya.

Additional information

Original Russian Text © S.Yu. Filippovich, G.P. Bachurina, N.N. Gessler, A.B. Golovanov, A.M. Makarova, N.V. Groza, T.A. Belozerskaya, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 6, pp. 578–583.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippovich, S.Y., Bachurina, G.P., Gessler, N.N. et al. Influence of oxygenated derivatives of linoleic and linolenic acids on the formation of conidia and protoperithecia in wild-type and photoreceptor complex mutants of Neurospora crassa . Appl Biochem Microbiol 51, 655–659 (2015). https://doi.org/10.1134/S0003683815060058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815060058

Keywords

Navigation