Skip to main content
Log in

Influence of phytochemical profile on antibacterial activity of different medicinal plants against gram-positive and gram-negative bacteria

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Nettle (Urtica dioica), basil (Ocimum basilicum), thyme (Thymus serphyllium), costmary (Chrysanthemum balsamita) and yarrow (Achillea millefolium) are used worldwide as aromatic herbs and medicinal plants. The alcoholic macerates of these plants were prepared and their chemical composition was investigated by spectrophotometric methods and HPLC chromatography with photodiode array detection. Alcoholic extracts were tested also in vitro against 5 pathogenic bacterial strains: 2 Gram-positive (Staphyloccocus aureus and Bacillus cereus) and 3 Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium). Minimum inhibitory concentrations for the extracts against all the microorganisms were determined by serial dilutions method. All the extracts demonstrated antibacterial activity against Gram-positive bacteria and partially against Gram-negative bacteria. In addition, nettle extract possessed the highest polyphenolic and flavonoid content. The results obtained indicated that these plants represent a potential source of natural antibacterial substances and can be used for the production of natural antibacterial formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivastava, J., Lambert, J., and Viermeyer, N., World Bank Technical Paper, 1996, No. 320.

    Google Scholar 

  2. Gupta, P.C., Pant, D.D., Joshi, P., and Lohar, D.R., Int. J. Green Pharm., 2009, vol. 7, no. 9, pp. 255–258.

    Article  Google Scholar 

  3. Rota, M.C., Herrera, A., Martínez, R.M., Sotomayor, J.A., and Jordán, M.J., Food Control, 2008, vol. 19, no. 7, pp. 681–687.

    Article  CAS  Google Scholar 

  4. Singh, G., Maurya, S., DeLampasona M.P., and Catalan, C., J. Food Sci., 2007, vol. 70, no. 4, pp. 208–215.

    Article  Google Scholar 

  5. Kolesnikov, M.P. and Gins, V.K., Appl. Biochem. Microbiol., 2001, vol. 37, no. 4, pp. 392–399.

    Article  CAS  Google Scholar 

  6. Lovkova, M.Ya., Buzuk, G.N., Sokolova, S.M., and Kliment’eva, N.I., Appl. Biochem. Microbiol., 2001, vol. 100, no. 3, pp. 229–237.

    Article  Google Scholar 

  7. Balasundram, N., Sundram, K., and Summan, S., Food Chem., 2006, vol. 99, pp. 191–202.

    Article  CAS  Google Scholar 

  8. Alinkina, E.S., Misharina, T.A., and Fatkullina, L.D., Appl. Biochem. Microbiol., 2013, vol. 49, no. 1, pp. 73–78.

    Article  CAS  Google Scholar 

  9. Kizil, S., Haimi, N., Tolan, V., Kilinç E., and Karataş, H., Notulae Botanicae Horti Agrobotanicae Cluj-Napoca, 2010, vol. 38, no. 3, pp. 99–103.

    CAS  Google Scholar 

  10. Zăvoi, S. Fetea, F. Ranga, F. Pop, R.M. Baciu A. and Socaciu, C., Notulae Botanicae Horti Agrobotanicae Cluj-Napoca, 2011, vol. 39, no. 2, pp. 82–89.

    Google Scholar 

  11. Sieckiewicz, M., Łysakowska, M., Ciećwierz, J., Denys, P., and Kowalczyk, E., Med. Chem., 2011, vol. 7, no. 6, pp. 674–689.

    Article  Google Scholar 

  12. Kukrić, Z.Z., Topalić-Trivunović, L.N., Kukavica, B.M., Matoš, S.B., Pavičić, S.S., Boroja, M.M., and Savić, A.V., Acta Periodica Technol., 2012, vol. 43, pp. 257–272.

    Article  Google Scholar 

  13. Bisset, N. M., Herbal Drugs and Phytopharmaceuticals, London: CRC Press, 1994.

    Google Scholar 

  14. Dube, S., Upadhyay, P.D., and Tripathi, S.C., Can. J. Botany, 1989, vol. 67, pp. 2085–2087.

    Article  CAS  Google Scholar 

  15. Matsingou, T.C., Kapsokefalou, M., and Safiloglou, A., Free Radical Res., 2001, vol. 35, pp. 593–605.

    Article  CAS  Google Scholar 

  16. Dapkevicius, A., Venskutonis, R., van Beek, T.G., and Linssen, J.P.H., J. Sci. Food Agric., 1998, vol. 77, pp. 140–146.

    Article  CAS  Google Scholar 

  17. Tena, M.T., Valcarcel, M., Hidalgo, P., and Ubera, J.L., Anal. Chem., 1997, vol. 69, pp. 521–526.

    Article  CAS  PubMed  Google Scholar 

  18. Rusak, G., Komes, D., Likić, S., Horžzić D., and Kovač, M., Food Chem., 2008, vol. 110, pp. 852–858.

    Article  CAS  Google Scholar 

  19. Singleton, V.L., Orthofer R., and Lamuela-Raventos, R.M., Meth. Enzymol., 1999, vol. 299, pp. 152–178.

    Article  CAS  Google Scholar 

  20. Arvouet-Grand, A., Vennat, B., Pourrat A., and Legret, P., J. Pharm. Belgique, 1994, vol. 4, pp. 462–468.

    Google Scholar 

  21. Kim, D., Chun, O., Kim, Y., Moon H., and Lee C., J. Agric. Food Chem., 2003, vol. 51, pp. 6509–6515.

    Article  CAS  PubMed  Google Scholar 

  22. Bunea, A. Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhe, R., and van Camp, J.V., Food Chem., 2008, vol. 108, no. 2, pp. 649–656.

    Article  CAS  Google Scholar 

  23. Modniki, D. and Balcerek, M., Herba Pol., 2009, vol. 55, no. 1, pp. 35–42.

    Google Scholar 

  24. El-Beshbishy, H.A. and Bahashwan, S.A., Toxicol. Ind. Health, 2012, vol. 28, no. 1, pp. 42–50.

    Article  PubMed  Google Scholar 

  25. Otles, S. and Yalcin, B., Sci. World J., 2012, vol. 2012, 12 pages. doi:10.1100/2012/564367

  26. Shakibaei, M., Allaway, D., Nebrich, S., and Mobasheri, A., Shakibaei, M., Allaway, D., Nebrich, S. and Mobasheri, A., Evidence-Based Compl. Alternat. Med., 2012, vol. 2012, 16 pages. http://dx.doi.org/10.1155/2012/509383

  27. Karlová, K., Hortic Sci. (Prague), 2006, vol. 33, no. 4, pp.158–162.

    Google Scholar 

  28. Vitalini, S., Beretta, G., Iriti, M., Orsenigo, S., Basilico, N., Dall’Acqua S., et al., Acta Biochim. Pol., 2011, vol. 58, no. 2, pp. 203–209.

    CAS  PubMed  Google Scholar 

  29. Mǎrculescu, A., Vlase, L., Hanganu, D., Drǎgulescu, C., Antonie, I., and Olah, N.K., Proc. Roman. Acad., Ser. B, 2007, vol. 3, pp. 117–121.

    Google Scholar 

  30. Sun, Q.L. Hua, S. Ye, J.H. Zheng X.Q., and Liang, Y.R., Afr. J. Biotechnol., 2010, vol. 9, no. 25, pp. 3817–3821.

    CAS  Google Scholar 

  31. Wu, L.Y., Gao, H.Z., Wang, X.L., Ye, J.H., Lu J.L., and Liang, Y.R., J. Med. Plant Res., 2010, vol. 4, no. 5, pp. 421–426.

    CAS  Google Scholar 

  32. Gülçin, I., Küfrevioğlu, Ö.I., Oktay, M., and Büyükokuroğlu, M.E., J. Etnopharmacol., 2004, vol. 90, pp. 205–215.

    Article  Google Scholar 

  33. Guleria, S., Tiku, A.K., Koul, A., Gupta, S., Singh G., and Razdan, V.K., Sci. World J., 2013, vol. 2013, 9 pages. http://dx.doi.org/10.1155/2013/790580

  34. Cruz Paredes, C., Bolivar Balbás, P., Gómez-Velasco, A., Juárez, Z.N., Sánchez Arreola, E., Hernández, L.R., and Bach, H., Sci. World J., 2013, vol. 2013, Article ID 237438, 6pages. http://dx.doi.org/10.1155/2013/237438

  35. Sassi, A.B., Harzallah-Skhiri, F., Bourgougnon, N., and Aouni, M., Ind. J. Med. Res., 2008, vol. 127, pp. 183–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Al. Marghitas.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobis, O., Dezmirean, D.S., Tomos, L. et al. Influence of phytochemical profile on antibacterial activity of different medicinal plants against gram-positive and gram-negative bacteria. Appl Biochem Microbiol 51, 113–118 (2015). https://doi.org/10.1134/S0003683815010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815010044

Keywords

Navigation