Skip to main content
Log in

Optimization of genetic constructs for high-level expression of the darbepoetin gene in mammalian cells

  • Producers, Biology, Selection, Genetic Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Genetic constructs were designed in order to optimize darbepoetin production in CHO cells. They are characterized by a higher level of structural optimization of the darbepoetin gene, a higher gene dose, and the selection of promoter elements that have never been used before for this purpose. A transient transfection of CHO cells by the obtained constructs was performed. It was shown that each of the variable factors in the constructs influenced darbepoetin gene expression. A construct containing a doubled dose of the darbepoetin synthetic gene with optimized codon composition under the control of the CMV-EF1α chimerical promoter was proved to be the most efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EIA:

enzyme immunoassay

PCR:

polymerase chain reaction

CHO:

Chinese hamster ovary cells

EPO:

erythropoietin

DEPO:

darbepoetin

References

  1. Powell, J.S., Berkner, K.L., Lebo, R.V., and Adamson, J.W., Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 6465–6469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Wasley, L.C., Timony, G., Murtha, P., Stoudemire, J., Dorner, A.J., Caro, J., Krieger, M., and Kaufman, R.J., The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin, Blood, 1991, vol. 77, pp. 2524–2632.

    Google Scholar 

  3. Cases, A., Darbepoetin alfa: a novel erythropoiesisstimulating protein, Drugs Today (Barc.), 2003, vol. 39, pp. 477–495.

    Article  CAS  Google Scholar 

  4. Ibbotson, T. and Goa, K.L., Darbepoetin alfa, Drugs, 2001, vol. 61, pp. 2097–2104.

    Article  CAS  PubMed  Google Scholar 

  5. Smith, R., Applications of darbepoietin-alpha, a novel erythropoiesis-stimulating protein, in oncology, Curr. Opin. Hematol., 2002, vol. 9, pp. 228–233.

    Article  PubMed  Google Scholar 

  6. Macdougall, I.C., Darbepoetin alfa: a new therapeutic agent for renal anemia, Kidney Int. Suppl., 2002, vol. 80, pp. 55–61.

    Article  PubMed  Google Scholar 

  7. Qin, J.Y., Zhang, L., Clift, K.L., Hulur, I., Xiang, A.P., Ren, B.Z., and Lahn, B.T., Systematic comparison of constitutive promoters and the doxycycline-inducible promoter, PLoS One, 2010, vol. 5, p. e10611.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Magnusson, T., Haase, R., Schleef, M., Wagner, E., and Ogris, M., Sustained, high transgene expression in liver with plasmid vectors using optimized promoterenhancer combinations, J. Gene Med., 2011, vol. 13, pp. 382–391.

    Article  CAS  PubMed  Google Scholar 

  9. Tokushige, K., Moradpour, D., Wakita, T., Geissler, M., Hayashi, N., and Wnads, J.R., Comparison between cytomegalovirus promoter and elongation factor-1 alpha promoter-driven constructs in the establishment of cell lines expressing hepatitis C virus core protein, J. Virol. Meth., 1997, vol. 64, pp. 73–80.

    Article  CAS  Google Scholar 

  10. Teschendorf, C., Warrington jr K.H., Siemann, D.W., and Muzyczka, N., Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell lines using recombinant adeno-associated virus, Anticancer Res., 2002, vol. 22, pp. 3325–3330.

    CAS  PubMed  Google Scholar 

  11. Bode, J., Beham, C., Knopp, A., and Mielke, C., Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements), Crit. Rev. Eukaryotic Gene Expr., 2000, vol. 10, pp. 73–90.

    CAS  Google Scholar 

  12. Bode, J., Schlake, T., Rios-Ramirez, M., Mielke, C., Stengert, M., Kay, V., and Klehr-Wirth, D., Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci, Int. Rev. Cytol., 1995, vol. 162A, pp. 389–454.

    CAS  PubMed  Google Scholar 

  13. Zahn-Zabal, M., Kobr, M., Girod, P.A., Imhof, M., Chatellard, P., de Jesus, M., Wurm, F., and Mermod, N., Development of stable cell lines for production or regulated expression using matrix attachment regions, J. Biotechnol., 2001, vol. 87, pp. 29–42.

    Article  CAS  PubMed  Google Scholar 

  14. Schubeler, D., Mielke, C., Maass, K., and Bode, J., Scaffold/matrix-attached regions act upon transcription in a context-dependent manner, Biochemistry, 1996, vol. 35, pp. 11160–11169.

    Article  CAS  PubMed  Google Scholar 

  15. Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D.C., and Hahn, D., JCat: a novel tool to adapt codon usage of a target gene to its potential expression host, Nucleic Acids Res., 2005, vol. 33, pp. 526–531.

    Article  Google Scholar 

  16. Comeron, J.M. and Aguade, M., An evaluation of measures of synonymous codon usage bias, J. Mol. Evol., 1998, vol. 47, pp. 268–274.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, C.H., Oh, Y., and Lee, T.H., Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells, Gene, 1997, vol. 199, pp. 293–301.

    Article  CAS  PubMed  Google Scholar 

  18. Kingston, R.E., Kaufman, R.J., Bebbington, C.R., and Rolfe, M.R., Amplification using CHO cell expression vectors, Curr. Protoc. Mol. Biol., 2002, Chapter 16, Unit 16 23.

    Google Scholar 

  19. Kellems, R.E., Gene amplification in mammalian cells; strategies for protein production, Curr. Opin. Biotechnol., 1991, vol. 2, pp. 723–729.

    Article  CAS  PubMed  Google Scholar 

  20. Wurm, F.M. and Jordan, M., Gene transfer and gene amplification in mammalian cells, Gen. Trans. Expres. Mammalian Cells, 2003, vol. 38, pp. 309–335.

    Article  CAS  Google Scholar 

  21. Vassileva, A., Chugh, D.A., Swaminathan, S., and Khanna, N., Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris, Prot. Expr. Purif., 2001, vol. 21, pp. 71–80.

    Article  CAS  Google Scholar 

  22. Patell, M., Ullana, R., Maity, S., and Hosh, S., An expression vector carrying scaffold/matrix attachment regions, Patent No. WO2011/070404 A1, 2011.

  23. Kim, J.Y., Kim, Y.G., and Lee, G.M., CHO cells in biotechnology for production of recombinant proteins: current state and further potential, Appl. Microbiol. Biotechnol., 2012, vol. 93, pp. 917–930.

    Article  CAS  PubMed  Google Scholar 

  24. Omasa, T., Intisuka, M., and Kim, W.D., Cell engineering and cultivation of Chinese hamster ovary (CHO) cells, Curr. Pharm. Biotechnol., 2010, vol. 11, pp. 233–240.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, S., Farfan-Arribas, D.J., Shen, S., Chou, T.H., Hirsch, A., He, F., and Lu, S., Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV-1 Inv DNA vaccine, Vaccine, 2006, vol. 24, pp. 4531–4540.

    Article  CAS  PubMed  Google Scholar 

  26. Welch, M., Villalobos, A., Gustafsson, C., and Minshull, J., Designing genes for successful protein expression, Methods Enzymol., 2011, vol. 498, pp. 43–66.

    Article  CAS  PubMed  Google Scholar 

  27. Norrman, K., Fischer, Y., Bonnamy, B., Wolfhagen, S.F., Ravassard, P., and Semb, H., Quantitative comparison of constitutive promoters in human ES cells, PLoS One, 2010, vol. 5, p. e12413.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Papadakis, E.D., Nicklin, S.A., Baker, A.H., and White, S.J., Promoters and control elements: designing expression cassettes for gene therapy, Curr. Gene Ther., 2004, vol. 4, pp. 89–113.

    Article  CAS  PubMed  Google Scholar 

  29. Xia, W., Bringmann, P., Mcclary, J., Jones, P.P., Manzana, W., Zhu, Y., Wang, S., Liu, Y., Harvey, S., Madlansacay, M.R., Mclean, K., Rosser, M.P., Macrobbie, J., Olsen, C.L., and Cobb, R.R., High levels of protein expression using different mammalian CMV promoters in several cell lines, Prot. Expr. Purif., 2006, vol. 45, pp. 115–124.

    Article  CAS  Google Scholar 

  30. Kim, S.Y., Lee, J.H., Shin, H.S., Kang, H.J., and Kim, Y.S., The human elongation factor 1 alpha (EF-1 alpha) first intron highly enhances expression of foreign genes from the murine cytomegalovirus promoter, J. Biotechnol., 2002, vol. 93, pp. 183–187.

    Article  CAS  PubMed  Google Scholar 

  31. Hacker, D.L., Baldi, L., Adam, M., and Wurm, F.M., Transient Gene Expression in Mammalian Cells: Promises and Challenges for Medical Biotechnology, in Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, New York: Wiley, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Shukurov.

Additional information

Original Russian Text © R.R. Shukurov, K.Yu. Kazachenko, D.G. Kozlov, A.A. Nurbakov, E.N. Sautkina, R.A. Khamitov, Yu.A. Seryogin, 2013, published in Biotekhnologiya, 2013, No. 2, pp. 34–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukurov, R.R., Kazachenko, K.Y., Kozlov, D.G. et al. Optimization of genetic constructs for high-level expression of the darbepoetin gene in mammalian cells. Appl Biochem Microbiol 50, 802–811 (2014). https://doi.org/10.1134/S0003683814090051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683814090051

Keywords

Navigation