Skip to main content
Log in

Conditions for Transformation of a Mesoscale Vortex into a Submesoscale Vortex Filament When the Vortex Is Stretched by an Inhomogeneous Barotropic Flow

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

In this paper, we study the effects of strong stretching in the horizontal plane of large-scale mesoscale ocean eddies using the theory of ellipsoidal eddies in the World Ocean. The objective is to theoretically determine the physical conditions for unbounded stretching eddies and also check the feasibility of these conditions in the ocean. We estimate the share of mesoscale ocean eddies that are elongated into filaments and then they redistribute energy from the mesoscale to the submesoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics (Gidrometeoizdat, Leningrad, 1978) [in Russian].

    Google Scholar 

  2. V. V. Zhmur, Mesoscale Ocean Eddies (GEOS, Moscow, 2011) [in Russian].

    Google Scholar 

  3. V. V. Zhmur, E. V. Novoselova, and T. V. Belonenko, “Potential vorticity in the ocean: Ertel and Rossby approaches with estimates for the Lofoten vortex,” Izv., Atmos. Ocean. Phys. 57 (6), 632–641 (2021). https://doi.org/10.1134/S0001433821050157

    Article  Google Scholar 

  4. V. V. Zhmur, E. V. Novoselova, and T. V. Belonenko, “Peculiarities of formation of the density field in mesoscale eddies of the Lofoten Basin: Part 2,” Oceanology 62 (3), 289–302 (2022). https://doi.org/10.1134/S0001437022030171

    Article  Google Scholar 

  5. V. V. Zhmur and K. K. Pankratov, “Dynamics of an ellipsoidal near-surface vortex in an inhomogeneous flow,” Okeanologiya 29 (2), 205–211 (1989).

    Google Scholar 

  6. V. V. Zhmur and K. K. Pankratov, “Long-range interaction of an ensemble of quasi-geostrophic ellipsoidal vortices. Hamiltonian formulation,” Izv. Akad. Nauk SSSR 26 (9), 972–981 (1990).

    Google Scholar 

  7. V. V. Zhmur and A. F. Shchepetkin, “Evolution of an ellipsoidal eddy in a stratified ocean in the f-plane approximation,” Izv. Ross. Akad. Nauk. Fiz. Atmos. Okeana 27 (5), 492–503 (1991).

    Google Scholar 

  8. V. A. Zinchenko, S. M. Gordeeva, Yu. V. Sobko, and T. V. Belonenko, “Mesoscale eddies in the Lofoten Basin from satellite data,” Fundam. Prikl. Gidrofiz. 12 (3), 46–54 (2019). https://doi.org/10.7868/S2073667319030067

    Article  Google Scholar 

  9. S. A. Chaplygin, Collection of Works (Gostekhizdat, Moscow, 1948), Vol. 2 [in Russian].

    Google Scholar 

  10. T. V. Belonenko, V. A. Zinchenko, A. M. Fedorov, et al., “Interaction of the Lofoten Vortex with a satellite cyclone,” Pure Appl. Geophys. 178, 287–300 (2021). https://doi.org/10.1007/s00024-020-02647-1

    Article  Google Scholar 

  11. E. T. Eady, “Long waves and cyclone waves,” Tellus 1 (3), 33–52 (1949).

    Article  Google Scholar 

  12. A. M. Fedorov and T. V. Belonenko, “Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database,” Russ. J. Earth Sci. 20, ES2002 (2020). https://doi.org/10.2205/2020ES000694

    Article  Google Scholar 

  13. S. M. Gordeeva, V. A. Zinchenko, A. V. Koldunov, et al., “Statistical analysis of long-lived mesoscale eddies in the Lofoten Basin from satellite altimetry,” Adv. Space Res. 68 (2), 364–377 (2020). https://doi.org/10.1016/j.asr.2020.05.043

    Article  Google Scholar 

  14. S. Kida, “Motion of an elliptic vortex in uniform shear flow,” J. Phys. Soc. Jpn. 50 (10), 3517–3520 (1981).

    Article  Google Scholar 

  15. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Ellipsoidal vortex in a nonuniform flow: Dynamics and chaotic advections,” J. Mar. Res., 69 (2–3), 435–461 (2011). https://doi.org/10.1357/002224011798765204

    Article  Google Scholar 

  16. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Diffusion-affected passive scalar transport in an ellipsoidal vortex in a shear flow,” Nonlin. Process. Geophys. 20 (4), 437–444 (2013). https://doi.org/10.5194/npg-20-437-2013

    Article  Google Scholar 

  17. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Effect of the vertical component of diffusion on passive scalar transport in an isolated vortex model,” Phys. Rev. E 92 (5), 053021 (2015). https://doi.org/10.1103/PhysRevE.92.053021

    Article  Google Scholar 

  18. S. P. Meacham, “Quasigeostrophical ellipsoidal vortices in stratified fluid,” Dyn. Atmos. Oceans 16 (3–4), 189–223 (1992).

    Article  Google Scholar 

  19. S. P. Meacham, K. K. Pankratov, A. F. Shchepetkin, and V. V. Zhmur, “The interaction of ellipsoidal vortices with background shear flows in a stratified fluid,” Dyn. Atmos. Oceans 21 (2–3), 167–212 (1994). https://doi.org/10.1016/0377-0265(94)90008-6

    Article  Google Scholar 

  20. K. K. Pankratov and V. V. Zhmur, “A dynamics of desinglarized quasigeostrophic vortices,” Phys. Fluids A: Fluid Dyn. 3 (5), 1464 (1991). https://doi.org/10.1063/1.857998

    Article  Google Scholar 

  21. V. V. Zhmur, E. V. Novoselova, and T. V. Belonenko, “Peculiarities of formation of the density field in mesoscale eddies of the Lofoten Basin: Part 1,” Oceanology 61 (6), 830–838 (2021). https://doi.org/10.1134/S0001437021060333

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (grant no. 22-17-00267) and the state contract no. 0128-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhmur.

APPENDIX

APPENDIX

The starting point of the study is a system of ordinary differential equations describing the behavior of an ellipsoidal vortex (see formulas (12a) and (12b)):

$$\left\{ \begin{gathered} \dot {\varepsilon } = 2\varepsilon e{\text{cos}}2\theta {\text{,}} \\ \dot {\theta } = \frac{{\sigma K}}{2}\int\limits_0^\infty {\frac{{\mu \partial \mu }}{{\sqrt {{{{\left( {{{\mu }^{2}} + \left( {\varepsilon + \frac{1}{\varepsilon }} \right)\mu + {\text{1}}} \right)}}^{3}}\left( {{{K}^{2}} + \mu } \right)} }}} \\ + \,\,\gamma - \frac{{{{\varepsilon }^{2}} + 1}}{{{{\varepsilon }^{2}} - 1}}e{\text{sin}}2\theta \\ \end{gathered} \right\}.$$
(16)

The solution to this system is a family of integral curves:

$$\begin{gathered} {\text{sin}}2\theta \left( \varepsilon \right) = \frac{\sigma }{e}\left( {S\frac{\varepsilon }{{{{\varepsilon }^{2}} - 1}}} \right) \\ + \,\,\frac{\gamma }{\sigma }\frac{{\varepsilon - 1}}{{\varepsilon + 1}} + \frac{\varepsilon }{{{{\varepsilon }^{2}} - 1}}\int\limits_1^\varepsilon {\frac{{{{\varphi }^{2}} - 1}}{{{{\varphi }^{2}}}}} \\ \times \,\,\frac{K}{2}\int\limits_0^\infty {\frac{{\mu \partial \mu }}{{\sqrt {{{{\left( {{{\mu }^{2}} + \left( {\varphi + \frac{1}{\varphi }} \right)\mu + {\text{1}}} \right)}}^{3}}\left( {{{K}^{2}} + \mu } \right)} }}d\varphi {\text{,}}} \\ \end{gathered} $$
(17)

where S is the integration constant. Detailed analysis of this family of integral curves showed that for K > 0 and \(\frac{\gamma }{\sigma } \in R\), there are six different types of patterns of integral curves, which, with the selection of parameter \(\frac{\gamma }{\sigma }\), can be obtained for any K.

In the course of further research, the value of the parameter K was fixed and the corresponding types of integral curves were determined, analysis of which made it possible to construct in the parameter plane \(\left( {\frac{\gamma }{\sigma },\frac{e}{\sigma }} \right)\) zones corresponding to different modes of vortex behavior. Then, a similar procedure was carried out for another value of parameter K, when the zones of behavior of vortices were constructed for all K values of interest; transformation was made from the parameter plane \(\left( {\frac{\gamma }{\sigma },\frac{e}{\sigma }} \right)\) to the parameter plane \(\left( {\frac{\sigma }{e},\frac{\gamma }{e}} \right)\). The result of such a transformation is a map of the zones of behavior of ellipsoidal vortices shown in Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhmur, V.V., Belonenko, T.V., Novoselova, E.V. et al. Conditions for Transformation of a Mesoscale Vortex into a Submesoscale Vortex Filament When the Vortex Is Stretched by an Inhomogeneous Barotropic Flow. Oceanology 63, 174–183 (2023). https://doi.org/10.1134/S0001437023020145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023020145

Keywords:

Navigation