Skip to main content
Log in

Redistribution of Energy during Horizontal Stretching of Ocean Vortices by Barotropic Currents

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

The paper proposes a study of the transformation of the physical properties of mesoscale vortices during their strong elongation by horizontal barotropic currents. It is shown that when the core is pulled out, the kinetic and available potential energies of the vortex individually, as well as their sum (the total mechanical energy of the vortex) decreases, and the vortex itself degrades in all physical parameters. The decrease in the energy of the ensemble of vortices when they are pulled out by the background flow is interpreted as a manifestation of the reverse energy cascade property or, in older terminology, the phenomenon of negative viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. G. S. Golitsyn, Probabilistic Structures of the Macroworld: Earthquakes, Hurricanes, Floods (Fizmatlit, Moscow, 2021) [in Russian].

    Google Scholar 

  2. V. V. Zhmur, Mesoscale Ocean Eddies (GEOS, Moscow, 2011) [in Russian].

    Google Scholar 

  3. V. V., Zhmur, E. V. Novoselova, and T. V. Belonenko, “Potential vorticity in the ocean: Ertel and Rossby approaches with estimates for the Lofoten vortex,” Izv., Atmos. Ocean. Phys. 57 (6), 632–641 (2021).

    Article  Google Scholar 

  4. V. V. Zhmur and K. K. Pankratov, “Dynamics of an ellipsoidal near-surface vortex in an inhomogeneous flow,” Okeanologiya 29 (2), 205–211 (1989).

    Google Scholar 

  5. V. V. Zhmur and K. K. Pankratov, “Long-range interaction of an ensemble of quasi-geostrophic ellipsoidal vortices. Hamiltonian formulation,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 26 (9), 972–981 (1990).

    Google Scholar 

  6. V. V. Zhmur and A. F. Shchepetkin, Evolution of an ellipsoidal eddy in a stratified ocean in the f-plane approximation, Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 27 (5), 492–503 (1991).

    Google Scholar 

  7. A. G. Zatsepin, V. I. Baranov, A. A. Kondrashov, et al., “Submesoscale eddies at the caucasus Black Sea shelf and the mechanisms of their generation,” Oceanology 51 (4), 554 (2011).

    Article  Google Scholar 

  8. V. D. Larichev and G. M. Reznik, “Strongly nonlinear two-dimensional soliton of Rossby waves,” Okeanologiya 16 (6), 961–967 (1976).

    Google Scholar 

  9. A. S. Bower, R. M. Hendry, D. E. Amrhein, and J. M. Lilly, “Direct observations of formation and propagation of subpolar eddies into the Subtropical North Atlantic,” Deep-Sea Res. II 85, 15–41 (2013). https://doi.org/10.1016/j.dsr2.2012.07.029

    Article  Google Scholar 

  10. L. Brannigan, Intense submesoscale upwelling in anticyclonic eddies,” Geophys. Res. Lett. 43 (7), 3360–3369 (2016). https://doi.org/10.1002/2016GLO67926

    Article  Google Scholar 

  11. L. Brannigan, D. P. Marshall, A. Naveira-Garabato, et al., “Submesoscale instabilities in mesoscale eddies,” J. Phys. Oceanogr. 47 (12), 3061–3085 (2017). https://doi.org/10.1175/JPO-D-16-0178.1

    Article  Google Scholar 

  12. X. Capet, J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, “Mesoscale to submesoscale. Transition in the California current system. Part I: Flow structure, eddy flux, and observational tests,” J. Phys. Oceanogr. 38 (1), 29–43 (2008). https://doi.org/10.1175/2007JPO3671.1

    Article  Google Scholar 

  13. X. Capet, J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, “Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes,” J. Phys. Oceanogr. 38 (1), 44–46 (2008). https://doi.org/10.1175/2007JPO3672.1

    Article  Google Scholar 

  14. X. Capet, J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, “Mesoscale to submesoscale transition in the California current system. Part III: Energy and balance flux,” J. Phys. Oceanogr. 38 (10), 2256–2269 (2008). https://doi.org/10.1175/2008JPO3810.1

    Article  Google Scholar 

  15. C. de Marez, X. Carton, S. Corréard, et al., “Observations of a deep submesoscale cyclonic vortex in the Arabian Sea,” Geophys. Res. Lett. 47 (13), e2020GL087881 (2020). https://doi.org/10.1029/2020GL087881

  16. H. Ertel, “Ein neuer hydrodynamischer Erhaltungssatz,” Die Naturwissenschaften 36, 543–544 (1942).

    Article  Google Scholar 

  17. H. Ertel, “Uber hydrodynamischer Wirbelsätze,” Physikalische Zeitschrift Leipzig 43, 526–529 (1942).

    Google Scholar 

  18. H. Ertel, “Ein neuer hydrodynamischer Wirbelsatz,” Meteorologische Zeitschrift 59, 277–281 (1942).

    Google Scholar 

  19. J. Gula, T. M. Blacic, and R. E. Todd, “Submesoscale coherent vortices in the Gulf Stream,” Geophys. Res. Lett. 46 (5), 2704–2714 (2019). https://doi.org/10.1029/2019GL081919

    Article  Google Scholar 

  20. P. Klein and G. Lapeyre, “The oceanic vertical pump induced by mesoscale and submesoscale turbulence,” Annu. Rev. Mar. Sci. 1 (1), 351–357 (2009). https://doi.org/10.1146/annurev.marine.010908.163704

    Article  Google Scholar 

  21. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Ellipsoidal vortex in a nonuniform flow: Dynamics and chaotic advections,” J. Mar. Res. 69 (2–3), 435–461 (2011).

    Article  Google Scholar 

  22. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Diffusion—effected passive scalar transport in an ellipsoidal vortex in a shear flow,” Nonlin. Process. Geophys. 20, 437–444 (2013). https://doi.org/10.5194/npg-20-437-2013

    Article  Google Scholar 

  23. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Effect of the vertical component of diffusion on passive scalar transport in an isolated vortex model,” Phys. Rev. 92 (5), 053021 (2015). https://doi.org/10.1103/PhysRevE.92.053021

    Article  Google Scholar 

  24. A. Mahadevan and A. Tandon, “An analysis of mechanisms for submesocale vertical motion at fronts,” Ocean Model. 14 (3), 241–256 (2006). https://doi.org/10.1016/j.ocemod.2006.05.006

    Article  Google Scholar 

  25. W. J. McKiver, “Balanced ellipsoidal vortex at finite Rossby number,” Geophys. Astrophys. Fluid Dyn. 114 (4–5), 1–26 (2020). https://doi.org/10.1080/03091929.2020.1755671

    Article  Google Scholar 

  26. S. P. Meacham, “Quasigeostrophic, ellipsoidal vortices in a stratified fluid,” Dyn. Atmos. Oceans 16 (3–4), 189–223 (1992).

    Article  Google Scholar 

  27. S. P. Meacham, K. K. Pankratov, A. F. Shchepetkin, and V. V. Zhmur, “The interaction of ellipsoidal vortices with background shear flows in a stratified fluid,” Dyn. Atmos. Oceans 21 (2–3), 167–212 (1994). https://doi.org/10.1016/0377-0265(94)90008-6

    Article  Google Scholar 

  28. K. K. Pankratov and V. V. Zhmur, “A dynamics of desingularized quasigeostrophic vortices,” Phys. Fluids A 3, 1464 (1991).

    Article  Google Scholar 

  29. G. Roullet and P. Klein, “Cyclone-anticyclone asymmetry in geophysical turbulence,” Phys. Rev. 104 (21), 218501 (2010). https://doi.org/10.1103/PhysRevLett.104.218501

    Article  Google Scholar 

  30. V. V. Zhmur, E. V. Novoselova, and T. V. Belonenko, “Peculiarities of formation the of density field in mesoscale eddies of the Lofoten Basin: Part 1,” Oceanology 61 (6), 830–838 (2021).

    Article  Google Scholar 

Download references

Funding

This work was supported within the framework of the Russian Science Foundation project 22-17-00264 and partially within the framework of the state task no. 0128-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhmur.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhmur, V.V., Harutyunyan, D.A. Redistribution of Energy during Horizontal Stretching of Ocean Vortices by Barotropic Currents. Oceanology 63, 1–16 (2023). https://doi.org/10.1134/S0001437023010186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023010186

Keywords:

Navigation