Skip to main content
Log in

Vertical turbulent exchange in the Black Sea pycnocline and its relation to water dynamics

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

Estimates of vertical turbulent diffusion coefficient (K t ) in the Black Sea pycnohalocline have been obtained from data of simultaneous observations of seawater temperature, salinity, density, and horizontal current velocity, obtained in the northeastern part of the Black Sea during 2013–2014 with a moored Aqualog profiler. A Munk and Andersson (1948) type parameterization, adapted for the Black Sea environment, is proposed for calculating K t . Strong short-period (several days) variability of turbulent exchange is revealed, induced by vertical shear variations of the current velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Arashkevich, N. E. Louppova, A. B. Nikishina, L. A. Pautova, V. K. Chasovnikov, A. V. Drits, O. I. Podymov, N. D. Romanova, R. R. Stanichnaya, A. G. Zatsepin, S. B. Kuklev, and M. V. Flint, “Marine environmental monitoring in the shelf zone of the Black Sea: Assessment of the current state of the pelagic ecosystem,” Oceanology (Engl. Transl.) 55, 871–876 (2015).

    Google Scholar 

  2. S. G. Boguslavskii and I. K. Ivashchenko, “Vertical mesostructure of the deep waters of the Black Sea,” Morsk. Gidrofiz. Zh., No. 5, 25–32 (1989).

    Google Scholar 

  3. V. N. Eremeev and V. M. Kushnir, “Layered structure of currents and vertical exchange in the Black Sea,” Okeanologiya (Moscow) 36 (1), 13–19 (1996).

    Google Scholar 

  4. A. G. Zatsepin, N. N. Golenko, A. O. Korzh, V. V. Kremenetskii, V. T. Paka, S. G. Poyarkov, and P. A. Stunzhas, “Influence of the dynamics of currents on the hydrophysical structure of the waters and the vertical exchange in the active layer of the Black Sea,” Oceanology (Engl. Transl.) 47, 301–312 (2007).

    Google Scholar 

  5. A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskiy, V. B. Piotukh, S. B. Kuklev, L. V. Moskalenko, O. I. Podymov, V. I. Baranov, A. O. Korzh, and S. V. Stanichny, “On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic shower of 2012,” Izv. Atmos. Ocean. Phys. 49, 659–673 (2013).

    Article  Google Scholar 

  6. A. N. Morozov, A. G. Zatsepin, S. B. Kuklev, et al., “Vertical structure of currents in the upper part of the continental slope of the Black Sea near Gelendzhik,” Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana (in press).

  7. A. N. Morozov, E. M. Lemeshko, S. A. Shutov, V. V. Zima, and D. V. Deryushkin, “Structure of the Black Sea Currents Based on the Results of the LADCP Observations in 2004–2014,” Physical Oceanogr. 1 (1), 25–40 (2017).

    Google Scholar 

  8. I. M. Ovchinnikov and Yu. I. Popov, “Formation of a cold intermediate layer in the Black Sea,” Okeanologiya (Moscow) 27 (5), 739–746 (1987).

    Google Scholar 

  9. O. I. Podymov and A. G. Zatsepin, “Seasonal anomalies of water salinity in the Gelendzhik region of the Black Sea according to shipborne monitoring data,” Oceanology (Engl. Transl.) 56, 342–354 (2016).

    Google Scholar 

  10. A. S. Samodurov and A. M. Chukharev, “Evaluation of intensity of the vertical turbulent exchange in the Black Sea according to experimental data,” in Ecological Safety of Coastal and Shelf Zones and Complex Use of Shelf Resources (Marine Hydrophysical Institute, Sevastopol, 2006), pp. 524–529.

    Google Scholar 

  11. A. Forryan, A. P. Martin, M. A. Srokosz, et al., “A new observationally motivated Richardson number based mixing parametrization for oceanic mesoscale flow,” J. Geophys. Res.: Oceans 118 (3), 1405–1419 (2013). doi doi 10.1002/jgrc.20108

    Article  Google Scholar 

  12. A. E. Gargett, “Vertical eddy diffusion in the ocean interior,” J. Mar. Res. 42 (2), 359–393 (1984).

    Article  Google Scholar 

  13. P. Gastel and J. L. Pelegri, “Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region,” Sci. Mar. 68 (4), 459–482 (2004).

    Article  Google Scholar 

  14. W. Geyer, “The importance of suppression of turbulence by stratification on the estuarine turbidity maximum,” Estuaries 16 (1), 113–125 (1993).

    Article  Google Scholar 

  15. R. E. Kent and D. W. Pritchard, “A test of mixing length theories in a coastal plain estuary,” J. Mar. Res. 18 (1), 62–72 (1959).

    Google Scholar 

  16. A. A. Kubryakov, S. V. Stanichny, A. G. Zatsepin, and V. V. Krementetsky, “Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem,” J. Mar. Syst. 163, 80–94 (2016). http://dx.doi.org/. doi 10.1016/j.jmarsys.2016.06.006

    Article  Google Scholar 

  17. I. Lozovatsky, E. Roget, H. Fernando, et al. “Sheared turbulence in a weakly stratified upper ocean,” Deep-Sea Res. 53, 387–407 (2005).

    Article  Google Scholar 

  18. G. L. Mellor and T. Yamada, “A hierarchy of turbulence closure models for planetary boundary layers,” J. Atmos. Sci. 31 (7), 1791–1806 (1974).

    Article  Google Scholar 

  19. R. Millard, W. B. Owens, and N. P. Fofonoff, “On the calculation of the Brunt-Väisälä frequency,” Deep-Sea Res. 37 (1), 167–181 (1990).

    Article  Google Scholar 

  20. W. H. Munk and E. R. Anderson, “Notes on the theory of the thermocline,” J. Mar. Res. 7, 276–295 (1948).

    Google Scholar 

  21. A. G. Ostrovskii and A. G. Zatsepin, “Short-term hydrophysical and biological variability over the northeastern Black Sea continental slope as inferred from multiparametric tethered profiler surveys,” Ocean Dyn. 61, 797–806 (2011).

    Article  Google Scholar 

  22. A. G. Ostrovskii and A. G. Zatsepin, “Intense ventilation of the Black Sea pycnocline due to vertical turbulent exchange in the Rim Current area,” Deep Sea Res., Part I 116, 1–13 (2016). http://dx.doi.org/. doi 10.1016/j.dsr.2016.07.011

    Article  Google Scholar 

  23. R. C. Pacanowski and S. G. H. Philander, “Parameterization of vertical mixing in numerical models of tropical oceans,” J. Phys. Oceanogr. 11 (11), 1443–1451 (1981).

    Article  Google Scholar 

  24. J. L. Pelegri and G. T. Csanady, “Diapycnal mixing in western boundary currents,” J. Geophys. Res.: Oceans 99 (9), 18275–18304 (1994).

    Article  Google Scholar 

  25. H. Peters, M. Gregg, and J. Toole, “On the parameterization of equatorial turbulence,” J. Geophys. Res.: Oceans 93 (2), 1199–1218 (1988).

    Article  Google Scholar 

  26. A. Soloview, R. Lukas, and P. Hacker, “An approach to parameterization of the oceanic turbulent boundary layer in the Western Pacific warm pool,” J. Geophys. Res.: Oceans 106 (3), 4421–4435 (2001).

    Article  Google Scholar 

  27. Z. Yu and P. Schopf, “Vertical eddy mixing in the tropical upper ocean: its influence on zonal currents,” J. Phys. Oceanogr. 27, 1447–1458 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Podymov.

Additional information

Original Russian Text © O.I. Podymov, A.G. Zatsepin, A.G. Ostrovsky, 2017, published in Okeanologiya, 2017, Vol. 57, No. 4, pp. 546–559.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podymov, O.I., Zatsepin, A.G. & Ostrovsky, A.G. Vertical turbulent exchange in the Black Sea pycnocline and its relation to water dynamics. Oceanology 57, 492–504 (2017). https://doi.org/10.1134/S0001437017040142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017040142

Navigation